祖宗十九代 LCA tarjan算法

本文介绍了一个用于查询家谱中两人共有最大世数直系先辈的算法实现,通过使用Tarjan算法来解决这一问题,包括读取输入、构建家谱图、查找共同祖先等关键步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

小p和小q是好朋友,有一天小p拿到了小q的家谱,想考一下小q对家族亲属的了解程度,询问家谱中某两个人的共有的世数最大的直系先辈,小q觉得自己算这个的话很枯燥就请你帮忙写一个程序,就向你请求帮助,告诉你所有的直系血缘关系,如:“2 3”表 示为2为3的直系先辈。然后求出某两个人的共有的世数最大的直系先辈。

Input

第一行输入一个数T,表示测试样例数。对于每组测试样例,第一行输入一个数N(2<=N<=10,000)表示家谱中的人数。接下来N-1行,每行两个整数并以空格相隔,第一个整数是是第二个整数的父亲,接下来一行输入两个数,为该次询问中的两个人。

Output

对于每组测试样例,输出一个数,表示两人的共有的世数最大的直系先辈。

样例输入
2
8
1 2
1 3
1 4
2 5
3 6
3 7
7 8
6 8
5
2 1
3 5
1 3
1 4
2 5
样例输出
3
2

#include<cstdio>
#include<cmath>
#include<vector>
#include<algorithm>
#include<cstring>
using namespace std;

const int MAXN = 500010;
int n, m, s, fa[MAXN], ans[MAXN],f[MAXN];
int Begin[MAXN], to[MAXN*2], Next[MAXN*2], e;
bool done[MAXN];
struct Query {
    int v, id;
    Query(int v, int id): v(v), id(id) {}
};
vector<Query> q[MAXN];

inline int read() {
    int x = 0;
    char ch = getchar();
    while(ch < '0' || ch > '9') ch = getchar();
    while(ch >= '0' && ch <= '9') {
        x = x * 10 + ch - '0';
        ch = getchar();
    }
    return x;
}

inline void Add(int u, int v) {
    to[++e] = v;
    Next[e] = Begin[u];
    Begin[u] = e;
}

int find(int x) {
    return fa[x] = fa[x] == x ? x : find(fa[x]);
}
int findf(int x){
	return x==f[x]?x:f[x]=findf(f[x]);
}
void Union(int a,int b)
{
	int fa=findf(a);
	int fb=findf(b);
	if(fa!=fb)
	  f[fb]=fa;
}
void Tarjan(int u, int f) {
    fa[u] = u;
    int i;
    for(i = Begin[u]; i; i = Next[i]) {
        if(to[i] == f) continue;
        Tarjan(to[i], u);
        fa[find(to[i])] = u;
    }
    done[u] = true;
    for(i = 0; i < q[u].size(); i++) 
        if(done[q[u][i].v]) 
            ans[q[u][i].id] = find(q[u][i].v);
}

int main() {
	int t;
	scanf("%d",&t);
	for(int k=0;k<t;k++){
	
    int i, u, v;
    n = read();
   // m = read();
   m=1;
   // s = read();
    for(int i=1;i<=n;i++)
    {
	    f[i]=i;
    q[i].clear();}
    memset(fa,0,sizeof(fa));
    memset(ans,0,sizeof(ans));
    memset(done,0,sizeof(done));
    memset(Begin,0,sizeof(Begin));
    memset(to,0,sizeof(to));
    memset(Next,0,sizeof(Next));
    for(i = 1; i < n; i++) {
        u = read();
        v = read();
        Add(u, v);
        Add(v, u);
        Union(u,v);
    }
    s=findf(1);
 //   printf("s=%d\n",s);
    for(i = 1; i <= m; i++) {
        u = read();
        v = read();
        q[u].push_back(Query(v, i));
        q[v].push_back(Query(u, i));
    }
    Tarjan(s, -1);
    for(i = 1; i <= m; i++) printf("%d\n", ans[i]);
}
    return 0;
}

一开始没有全部初始化,崩了几次。。。后来加了好多memset,需要自己找祖先(即根节点);

附原始tarjan模板

#include<cstdio>
#include<cmath>
#include<vector>
#include<algorithm>
using namespace std;

const int MAXN = 500010;
int n, m, s, fa[MAXN], ans[MAXN];
int Begin[MAXN], to[MAXN*2], Next[MAXN*2], e;
bool done[MAXN];
struct Query {
    int v, id;
    Query(int v, int id): v(v), id(id) {}
};
vector<Query> q[MAXN];

inline int read() {
    int x = 0;
    char ch = getchar();
    while(ch < '0' || ch > '9') ch = getchar();
    while(ch >= '0' && ch <= '9') {
        x = x * 10 + ch - '0';
        ch = getchar();
    }
    return x;
}

inline void Add(int u, int v) {
    to[++e] = v;
    Next[e] = Begin[u];
    Begin[u] = e;
}

int find(int x) {
    return fa[x] = fa[x] == x ? x : find(fa[x]);
}

void Tarjan(int u, int f) {
    fa[u] = u;
    int i;
    for(i = Begin[u]; i; i = Next[i]) {
        if(to[i] == f) continue;
        Tarjan(to[i], u);
        fa[find(to[i])] = u;
    }
    done[u] = true;
    for(i = 0; i < q[u].size(); i++) 
        if(done[q[u][i].v]) 
            ans[q[u][i].id] = find(q[u][i].v);
}

int main() {
    int i, u, v;
    n = read();
    m = read();
    s = read();
    for(i = 1; i < n; i++) {
        u = read();
        v = read();
        Add(u, v);
        Add(v, u);
    }
    for(i = 1; i <= m; i++) {
        u = read();
        v = read();
        q[u].push_back(Query(v, i));
        q[v].push_back(Query(u, i));
    }
    Tarjan(s, -1);
    for(i = 1; i <= m; i++) printf("%d\n", ans[i]);
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值