hdu 2516 斐波那契博弈

有一堆个数为n(n>=2)的石子,游戏双方轮流取石子,规则如下:

1)先手不能在第一次把所有的石子取完,至少取1颗;

2)之后每次可以取的石子数至少为1,至多为对手刚取的石子数的2倍。

约定取走最后一个石子的人为赢家,求必败态。

结论:当n为Fibonacci数的时候,必败。

f[i]:1,2,3,5,8,13,21,34,55,89……

证明就略了吧,可以看其他的博客,我就简单记下结论

#include<bits/stdc++.h>
using namespace std;
int fib[50];
int main()
{
    fib[0]=1;fib[1]=2;
    for(int i=2; i< 45;i++)
        fib[i]=fib[i-1]+fib[i-2];
    int n;
    while(cin>>n&&n){
        int i=0;
        for(i=0;i<45;i++)
            if(fib[i]==n)
                break;
        if(i<45)
            printf("Second win\n");
        else printf("First win\n");
    }
    return 0;
}

阅读更多
文章标签: 斐波那契博弈
个人分类: 博弈论 算法
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭