2019年南昌邀请赛 - 网络赛G:tsy's number【莫比乌斯反演】

题目:

2019年南昌邀请赛 - 网络赛G:tsy's number

题意:

多组输入N,求下面式子模 (1<<30) 后的值:

\sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{k=1}^{n}\frac{\varphi(i)\varphi(j^2)\varphi(k^3)}{\varphi(i)\varphi(j)\varphi(k)}\varphi(gcd(i,j,k))

分析:

(1)根据欧拉函数的定义,直接化简为:

\sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{k=1}^{n}jk^2\varphi(gcd(i,j,k))

=\sum_{d=1}^{n}\varphi(d)d^3\sum_{i=1}^{n/d}\sum_{j=1}^{n/d}\sum_{k=1}^{n/d}jk^2[gcd(i,j,k)==1]

=\sum_{g=1}^{n}\varphi(g)g^3\sum_{i=1}^{n/g}\sum_{j=1}^{n/g}\sum_{k=1}^{n/g}jk^2\sum_{d|gcd(i,j,k)}\mu(d)

=\sum_{g=1}^{n}\varphi(g)g^3f(\left \lfloor \frac{n}{g} \right \rfloor)

预处理 phi(g)*g^3 的前缀和,只要知道 f(n) 的值就可以分块快速计算了,那么 f(n):

=\sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{k=1}^{n}jk^2\sum_{d|gcd(i,j,k)}\mu(d)

=\sum_{d=1}^{n}\mu(d)d^3\sum_{i=1}^{n/d}\sum_{j=1}^{n/d}\sum_{k=1}^{n/d}jk^2

=\sum_{d=1}^{n}\mu(d)d^3g(\left \lfloor \frac{n}{d} \right \rfloor)

g(n) 的值可以 O(1) 直接计算(由于 12 与模数的逆元不存在,但可以处理成只算 3 与模数的逆元),预处理 mul(d)*d^3 的前缀和就可以分块快速计算了;似乎这样复杂度是不对的,但我又不会筛 f(n) 函数,暴力预处理出小部分 f(n) 的值就冲过去了,跑得还特别快,应该是数据水了

代码:

#include <bits/stdc++.h>

using namespace std;
typedef long long LL;
const int maxm = 7e5+75;
const int maxn = 1e7+17;
const int MAXN = 3e4+15;
const int mod = (1<<30);
const int inv3 = 715827883;
int phi[maxn],mul[maxn],prime[maxm],g[maxn],f[maxn],sum[MAXN];
void init(){
    phi[1] = mul[1] = 1;int cnt = 0;
    for(int i = 2;i < maxn; ++i){
        if(!phi[i]){
            phi[i] = i-1;mul[i] = -1;
            prime[cnt++] = i;
        }
        for(int j = 0;j<cnt&&1ll*i*prime[j]<maxn; ++j){
            if(i%prime[j] == 0){
                phi[i*prime[j]] = phi[i] * prime[j];
                mul[i*prime[j]] = 0; break;
            }
            else{
                phi[i*prime[j]] = phi[i] * phi[prime[j]];
                mul[i*prime[j]] = -mul[i];
            }
        }
    }
    for(int i = 1;i < maxn; ++i){
        g[i] = g[i-1]+1ll*phi[i]*i%mod*i%mod*i%mod;
        if(g[i] >= mod) g[i] -= mod;
        f[i] = f[i-1]+1ll*mul[i]*i%mod*i%mod*i%mod;
        f[i] = (f[i]+mod)%mod;
    }
}
map<int,int> mp;
LL cal(int n){
    LL res = 0;
    for(int i = 1,last;i <= n; i = last+1){
        int d = n/i; last = n/d;
        LL tep= 1ll*d*(d+1)/2%mod*(1ll*d*(d+1)/2)%mod*d%mod*(2*d+1)%mod*inv3%mod;
        res += (1ll*(f[last]-f[i-1])*tep%mod+mod)%mod;
        if(res >= mod) res -= mod;
    }
    return res;
}
LL FF(int n){
    if(n < MAXN) return sum[n];
    if(mp.count(n)) return mp[n];
    return mp[n] = cal(n);
}
LL solve(int n){
    LL res = 0;
    for(int i = 1,last;i <= n; i=last+1){
        int d = n/i; last = n/d;
        res += 1ll*(g[last]-g[i-1]+mod)%mod*FF(d)%mod;
        if(res >= mod) res -= mod;
    }
    return res;
}
int main(){
    init(); for(int i = 1;i < MAXN; ++i) sum[i] = cal(i);    //暴力预处理部分f(i)的前缀和
    int T,n; scanf("%d",&T);
    while(T--){
        scanf("%d",&n);
        printf("%d\n",(int)solve(n));
    }
    return 0;
}

 (2)上面的方法肯定不是正解,正确的姿势应该是:

\sum_{g=1}^{n}\varphi(g)g^3\sum_{i=1}^{n/g}\sum_{j=1}^{n/g}\sum_{k=1}^{n/g}jk^2\sum_{d|gcd(i,j,k)}\mu(d)

=\sum_{g=1}^{n}\varphi(g)g^3\sum_{d=1}^{n}\mu(d)d^3\sum_{i=1}^{\left \lfloor \frac{n}{gd} \right \rfloor}\sum_{j=1}^{\left \lfloor \frac{n}{gd} \right \rfloor}\sum_{k=1}^{\left \lfloor \frac{n}{gd} \right \rfloor}jk^2

=\sum_{T=1}^{n}\sum_{d|T}\mu(d)d^3\varphi(\frac{T}{d})(\frac{T}{d})^3\sum_{i=1}^{\left \lfloor \frac{n}{T} \right \rfloor}\sum_{j=1}^{\left \lfloor \frac{n}{T} \right \rfloor}\sum_{k=1}^{\left \lfloor \frac{n}{T} \right \rfloor}jk^2

=\sum_{T=1}^{n}\sum_{d|T}\mu(d)\varphi(\frac{T}{d})T^3\sum_{i=1}^{\left \lfloor \frac{n}{T} \right \rfloor}\sum_{j=1}^{\left \lfloor \frac{n}{T} \right \rfloor}\sum_{k=1}^{\left \lfloor \frac{n}{T} \right \rfloor}jk^2

=\sum_{T=1}^{n}f(T)\sum_{i=1}^{\left \lfloor \frac{n}{T} \right \rfloor}\sum_{j=1}^{\left \lfloor \frac{n}{T} \right \rfloor}\sum_{k=1}^{\left \lfloor \frac{n}{T} \right \rfloor}jk^2

后面一堆同样可以 O(1) 直接算,中间的 f(T) 函数是一个积性函数可以线性筛直接筛出来,这样就又可以分块加速计算了

f(T) 函数的筛法参考:关于在线性筛中求积性函数

代码:

#include <bits/stdc++.h>

using namespace std;
typedef long long LL;
const int maxm = 7e5+75;
const int maxn = 1e7+17;
const int mod = (1<<30);
const int inv3 = 715827883;
int prime[maxm],vis[maxn],phi[maxn],f[maxn],low[maxn],cnt;
void init(){
    f[1] = 1;low[1] = 1;phi[1] = 1;
    for(int i = 2;i < maxn; ++i){
        if(!vis[i]){
            f[i] = 1ll*(i-2)*i%mod*i%mod*i%mod;
            prime[cnt++] = i; low[i] = i; phi[i] = i-1;
        }
        for(int j = 0;j<cnt&&1ll*i*prime[j]<maxn; ++j){
            int v = i*prime[j]; vis[v] = 1;
            if(i%prime[j] == 0){
                phi[v] = phi[i]*prime[j]; low[v] = low[i]*prime[j];
                if(i == low[i]) f[v] = 1ll*(phi[v]-phi[i])*v%mod*v%mod*v%mod;
                else f[v] = 1ll*f[i/low[i]]*f[prime[j]%mod*low[i]]%mod;
                break;
            }else{
                f[v] = 1ll*f[i]*f[prime[j]]%mod;
                low[v] = prime[j]; phi[v] = phi[i]*phi[prime[j]];
            }
        }
    } 
    for(int i = 1;i < maxn; ++i){                           //f(i)函数前缀和
        LL tep = 1ll*f[i-1] + f[i];
        f[i] = tep>=mod ? tep-mod : tep;
    }
}
int solve(int n){
    LL res = 0;
    for(int i = 1,last;i <= n; i=last+1){
        int d = n/i; last = n/d; LL t = 1ll*d*(d+1)/2;
        res += (1ll*f[last]-f[i-1]+mod)*t%mod*t%mod*d%mod*(2ll*d+1)%mod;
        if(res >= mod) res -= mod;
    }
    return res*inv3%mod;
}
int main(){
    init(); 
    int T,n; scanf("%d",&T);
    while(T--){
        scanf("%d",&n);
        printf("%d\n",solve(n));
    }
    return 0;
}

 

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值