BZOJ---1452:[JSOI2009]Count【二维树状数组】

题面:

BZOJ---1452

题意:

给定一个矩阵,有两种操作,(1)修改一个格子的颜色(2)查询一个矩阵中颜色为C的格子的数量

分析:

注意到颜色<100,如果是一维,我们可以对每个C建一个树状数组,维护它出现的位置;对于二维,用二维树状数组:在一维树状数组中tr[x]表示以x为右端点长度为lowbit[x]的区间的信息,对于二维树状数组tr[x][y]表示以(x,y)为右下角,高为lowbit(x),宽为lowbit(y)的矩阵的信息,只需要在一维每个区间的基础上再建一个关于y的树状数组即可;查询某个子矩阵的信息时,和二维前缀和查询子矩阵的和的方法一样,例如查询左上角为(x,y),右下角为(xx,yy)的矩阵的和:sum[xx][yy] - sum[xx][y-1] - sum[x-1][yy]+sum[x-1][y-1]

代码:

#include <bits/stdc++.h>

using namespace std;
const int maxn = 305;
int tr[105][maxn][maxn],color[maxn][maxn],n,m,q,x,y,xx,yy,op,c;
inline int lowbit(int x){
    return (-x)&x;
}
int query(int x,int y,int c){             //查询左上角为(1,1)右下角为(x,y)的矩阵的信息
    int sum = 0;
    for(int i = x;i > 0;i -= lowbit(i))
        for(int j = y;j > 0;j -= lowbit(j))
            sum += tr[c][i][j];
    return sum;
}
void updata(int x,int y,int c,int val){   //更新坐标为(x,y)格子的信息
     for(int i = x;i <= n;i += lowbit(i))
        for(int j = y; j <= m;j += lowbit(j))
            tr[c][i][j] += val;
}
int main(){
    scanf("%d %d",&n,&m);
    for(int i = 1;i <= n; ++i)
        for(int j = 1;j <= m; ++j)
            scanf("%d",&color[i][j]),updata(i,j,color[i][j],1);
    scanf("%d",&q);
    while(q--){
        scanf("%d",&op);
        if(op == 1){
            scanf("%d %d %d",&x,&y,&c);
            updata(x,y,color[x][y],-1);
            color[x][y] = c;
            updata(x,y,color[x][y],1);
        }
        else{
            scanf("%d %d %d %d %d",&x,&xx,&y,&yy,&c);
            printf("%d\n",query(xx,yy,c)+query(x-1,y-1,c)-query(xx,y-1,c)-query(x-1,yy,c));
        }
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值