StaMPS中使用GACOS数据进行大气校正,解缠、计算形变速率

文章详细介绍了如何下载GACOS数据,查看其用法,并在遥感图像处理软件StaMPS中利用GACOS数据进行大气校正,包括设置参数、相位解缠和时间形变速率的计算,最后通过ps_plot制作相关误差分析图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 GACOS数据下载

GACOS官网
在这里插入图片描述

  • Time of insterest(in UTC)时间设置
    这个在数据名称里面可以看到,如果数据的条带一致,那么每日拍摄时间应该也是一样的,如下图红框所示,T后面的数字就是HHMMSS,即10时18分43秒
    在这里插入图片描述

  • 选择二进制文件Binary grid
    在这里插入图片描述

  • 提交之后,如果没有出错,会弹出这个界面
    在这里插入图片描述

  • 然后等待邮件即可,邮箱里面有下载链接,一定要及时下载,数据只会在服务器上保存72小时,一般要几分钟至几个小时,取决于提交的数据空间范围和时间跨度

  • 下载好了之后解压可以看到如下内容
    在这里插入图片描述

2 查看GACOS用法

打开压缩包里面的readme.pdf,可以看到GACOS的使用步骤,在stamps中,一般使用前三个
在这里插入图片描述

3 在StaMPS中使用GACOS进行大气校正

  • 在StaMPS中,做完stamps(1,5)之后,开始做大气校正
  1. 查看当前大气校准参数
getparm_aps

在这里插入图片描述
2. 加载parms.mat参数配置文件,保存配置参数

load('parms.mat')
save('parms_aps.mat','heading', 'lambda','-append')

在这里插入图片描述

  1. 设置gacos数据路径
setparm_aps('gacos_datapath','/APS')

在这里插入图片描述

  1. 设置SAR数据成像时间
setparm_aps('UTC_sat','10:18')

在这里插入图片描述
5. 再次运行getparm_aps,检查参数是否设置成功
在这里插入图片描述
6. 运行aps_weather_model('gacos',1,3),进行大气校正
在这里插入图片描述
大气校正完成后会生成tca2.mat文件
在这里插入图片描述

4 stamps6 相位解缠 stamps7时间形变速率

  1. 在参数中设置去除大气噪声的算法为gacos,并将去除大气噪声的参数改成y,默认是n
setparm('tropo','a_gacos')
setparm('subtr_tropo','y')

在这里插入图片描述
2. 然后做stamps(6,7)
在这里插入图片描述
3. 因为上面的stamps(6,7)之后的结果是一次相位解缠和时间形变速率计算的结果,所以去除了一些误差,现在基于上面stamps7的结果重做相位解缠stamps(6,6),误差就更小了。
4. 设置setparm('scla_deramp','y') 去除deramp相位
5. stamps(7,7)时间形变速率
6. stamps(6,7)再做一遍,效果更平滑

5 制图

ps_plot('v-dao','a_gacos',1,0,0,'ts')
v表示形变速率
d表示dem误差
a表示大气atmosphere误差
o表示轨道orbit误差
ts表示time series时间序列

在这里插入图片描述

### 使用SARscape进行GACOS大气校正 #### 准备工作 为了执行基于SARscape模块的GACOS(Generic Atmospheric Correction Of Sentinel-1)大气校正,需先安装并配置好ENVI/IDL环境以及SARscape插件。确保已获取最新的气象模型数据文件,这些通常来自ERA5再分析产品[^1]。 #### 数据导入 启动ENVI软件后加载待处理的Sentinel-1原始影像,在工具栏找到`Tools>SARscape>Preprocessing>Sentinel-1>`选项来初始化预处理流程。此阶段主要完成辐射定标、多视处理等操作以准备高质量输入给后续的大气效应移除算法[^2]。 #### 执行GACOS校正 进入`Tools>SARscape>InSAR>GACOS>`菜单路径选取对应功能项开展具体作业: - **选择DEM**:指定高程模型用于辅助计算地形引起的相位变化; - **设置参数**:调整诸如时空分辨率匹配、噪声过滤强度之类的控制变量; - **应用校正**:提交任务指令让系统自动读取外部提供的GNSS-ZTD站点观测资料或下载在线服务接口所提供的最新成果来进行干涉图中的平流层水汽延迟补偿[^3]。 ```python import sarpy.io.complex as sicd_io from scipy.interpolate import griddata def apply_gacos_correction(sar_image_path, gacos_data): """ Apply GACOS correction to SAR image using provided GACOS data. :param sar_image_path: Path of the input SAR SICD file :type sar_image_path: str :param gacos_data: Numpy array containing GACOS corrections values :type gacos_data: numpy.ndarray """ reader = sicd_io.open_complex_file(sar_image_path) corrected_sar = reader.read_polarimetric_images() # Assuming that both datasets have same spatial reference system and extent latlon_coords = get_lat_lon_coordinates_from_sicd(reader) # Function not shown here interpolated_corrections = griddata(points=latlon_coords, values=gacos_data.flatten(), xi=(corrected_sar.shape[0], corrected_sar.shape[1]), method='linear') final_corrected_image = corrected_sar * np.exp(-1j * interpolated_corrections) return final_corrected_image ``` 上述Python脚本展示了如何利用SciPy库实现基本的空间插值逻辑,从而将离散分布的GPS站ZTD测量转换成连续覆盖整个研究区范围内的改正量场,并最终应用于SAR回波信号上达到消除湿分量影响的目的[^4]。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Vigo*GIS_RS

来瓶可乐~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值