原根学习笔记

整数的阶

定义1:如果n为正整数,且a为与n互素的整数。则根据a^{\phi (n)}\equiv 1(mod\quad n),必然存在一个最小整数x,使得a^{x}\equiv 1(mod\quad n),则该最小整数x称为a模n的阶,记为ord_{n}a。 如ord_{7}2=3

定理1:若a与n互素,则正整数x是a^{x}\equiv 1(mod\quad n)的解的必要条件为,ord_{n}a|x

推论1:由于a与n互素,因此\phi(n)a^{x}\equiv 1(mod\quad n)的一个解,因此ord_{n}a|\phi (n)

原根

定义2:如果r和n是互素的整数且n>0,那么当ord_{n}a=\phi(n)时称r为n的原根。

猜想1:只有当n为2、4、p^{t}2p^{t}(p为奇素数)时,n才有原根。

以上就是原根的基本定义,以及一些基本的定理了。

 

对于素数p而言,一定存在原根。根据推论1ord_{n}a|\phi (n)以及\phi(p) = p-1,因此对于某个整数g来说,枚举p-1除自身外的因子,如果存在一个因子x使得g^{x}\equiv1(mod\quad p)成立,则说明ord_{p}g<\phi(p)说明g不为p的原根。反之,若对于p-1除自身外的所有因子x满足g^{x}\not\equiv 1(mod\quad p),则g为p的原根。

因为枚举因子可能会超时,所以考虑若p-1的某个因子x满足g^{x}\equiv1(mod\quad p),那么g^{kx}\equiv1(mod\quad p)也一定满足,对p-1做唯一分解p-1=p_{1}^{a_{1}}*p_{2}^{a_{2}}*p_{3}^{a_{3}}...,那么如果存在x(x < p - 1)使得g^{x}\equiv1(mod\quad p),则必然存在\frac{p-1}{p_{i}}是x的倍数,即存在g^{\frac{p-1}{p_{i}}}\equiv1(mod\quad p)。因此我们枚举g(1<g<p),并判断是否存在g^{\frac{p-1}{p_{i}}}\equiv1(mod\quad p),就可以判断g是不是p的原根了。

例题:51nod1135

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;

ll qpow(ll a,ll b,ll mod){//快速幂a^b%mod 
	ll res = 1;
	a %= mod;
	while(b){
		if(b & 1)	res = res * a % mod;
		a = a * a % mod;
		b >>= 1;
	} 
	return res;
}

set<int> fac;//存n的素因子 
void divide(int n){
	int len = sqrt(n);
	for(int i = 2;i <= len;++i)
		if(n % i == 0){
			while(n % i == 0)	n /= i;
			fac.insert(i);
		}
	if(n != 1)	fac.insert(n);
}

bool check(int g,int P){
	for(auto pi:fac)
		if(qpow(g,(P - 1) / pi,P) == 1)	return false;//存在g^x=1(mod p) x < phi(p) 
	return true;
}

int main(){
	int P;
	
	cin>>P;
	divide(P - 1);
	for(int g = 2;g < P;++g)
		if(check(g,P)){
			cout<<g<<endl;
			break;
		}
	
	return 0;
} 

 

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值