LabVIEW相关工具包与模块安装

LabVIEW的工具包以及模块安装由于具有不同的安装方式,在此记录一下自己之前踩过的种种坑以及安装步骤。看完如果觉得避坑了,也还请给我点个赞吧~ 首先需要强调的是LabVIEW的模块(module)与工具包(toolkits)是不一样的,模块是会调用更多的电脑资源,实现的功能也会更加强大,且安装完成后往往会需要重新启动电脑。

一、工具包安装

1. 通过VI Package Manager安装

可以通过VI Package Manager安装(例如JKI状态机)。这是NI官方的工具包下载器,里面大部分是免费开源的,也有部分是需要收费的。注意它与NI Package Mannger的区别,前者使用来辅助安装与查看Labview工具包的,后者是用来辅助安装与查看NI公司软件的,例如,NI Max软件或是使用LabVIEW语言编写的软件。

在此以JKI状态机工具包为例:
1)首先点击进入VI Package Manager,这个一般你安装了LabVIEW就会自带安装,直接在开始栏搜索VI就可以找到,然后点击进入(没找到的话NI官网上去搜索吧)
在这里插入图片描述
2) 然后进行关键词搜索(这里以JKI状态机为例),找到对应的工具包:
在这里插入图片描述

3)点击Install Package进行安装,安装过程需要关闭LabVIEW,点击接收条款,然后耐心等待就可以了
在这里插入图片描述
在这里插入图片描述

点击Close LabVIEW就好了
在这里插入图片描述
在这里插入图片描述

正在安装的界面:
在这里插入图片描述在这里插入图片描述

4)安装完成:

5)进入Labview里查看:

2.uesr.lib文件夹添加安装

而有一些好用的开源工具包是在上面找不到的,那就需要去在网上进行资源检索,下载相关开源工具包,并放在user.lib目录下即可以使用

1)这里以LabSQL工具包为例,完整的工具包解压后在LabSQL文件夹下应该至少包含Examples与LabSQL ADO functions 两个文件夹
在这里插入图片描述

2)可以右键点击桌面LabVIEW的快捷方式>>文件所在位置,然后快速进入里的LabView安装目录下

3)拖入解压好的LabSQL文件夹进入user.lib目录中
在这里插入图片描述

4)进入Labview中查看
在这里插入图片描述

5)如果按照上述步骤没有显示的话,可能是设置上的问题,按照如下操作:
程序框图点击右键>>拉至最下>>点击更改可见选板>>勾选用户库>>点击确定即可
在这里插入图片描述
在这里插入图片描述

3.在设备对应官网下载

有时又需要在设备官网安装对应型号的labview工具包(如英飞凌数据采集卡工具包)这个真得自己按照你所使用设备的相应用户手册去安装下载,如果单例一种容易误导人,毕竟这种工具包安装方式根据设备厂商不一样,就会有所变化。总之,跟着你买的设备的用户手册走就行了

4.在NI官网下载

在NI官网上找寻相应安装包安装(不过最后一般还是会让你回到VI Package Manger)

二、模块安装方式

LabVIEW的模块(module)与工具包(toolkits)是不一样的,模块是会调用更多的电脑资源,实现的功能也会更加强大,且安装完成后往往会需要重新启动电脑。

1. 在NI官网上查找所需模块或是寻找网络资源

由于NI官网上较多模块在LabVIEW2018及以下版本不免费提供,需开通会员,所以在这里给出网络上LabVIEW2018与2017版本的模块(当中也有一些开源的工具包)下载链接(感谢前辈!,请别忘记给前辈们点个赞或是留下一句谢谢~)

1)网络资源汇总
2018版本:https://blog.csdn.net/zhao_hong_liang/article/details/90723581
2017版本:https://blog.csdn.net/Feeryman_Lee/article/details/107778983?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522161871944516780271575724%2522%252C%2522scm%2522%253A%252220140713.130102334…%2522%257D&request_id=161871944516780271575724&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2allsobaiduend~default-1-107778983.pc_search_result_before_js&utm_term=labview2017%E5%B7%A5%E5%85%B7%E5%8C%85

2)找到相应模块后,按照相应的步骤进行解压(这里以DSC模块为例):
这是使用谷歌浏览器自带下载器下载好后的DSC模块:
在这里插入图片描述
打开它,按照提示进行解压,红方框内的解压位置根据情况任意选择(这里解压的仅仅只是安装程序,不涉及最后的模块安装位置)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3)使用解压完成的安装包进行模块安装
解压完成后,模块安装会进入至此界面;如果没有,就至你的安装目录下点击atuorun.exe或是setup.exe,等待界面加载至此界面:

在这里插入图片描述

之后按照流程走一遍:
在这里插入图片描述
在这里插入图片描述
这里模块直接自动识取了LabVIEW的安装路径(NI还是厉害的~),这里的路径就不要随意改动了
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

耐心等待安装,直至安装完成界面

在这里插入图片描述
之后会跳出需重启电脑的界面,建议选择直接重启电脑

4)最重要的一步!!!!在安装完模块后,我们需要将模块激活,这里就要用到万能的NI激活软件工具NI License Activator 1.2.exe(感谢Ahmed Maasher大神-),下处附上网盘链接(此软件无需安装,解压即用)

NI License Activator 1.2.exe 网盘链接:https://pan.baidu.com/s/1jVtGrl3jrVQ6n0xkjn4QGg
提取码:ekwr

大神的软件会自动识别你所安装的模块,然后右键点击你所安装的模块进行激活就可以了:
在这里插入图片描述
激活后的样子:
在这里插入图片描述

你可以安心使用了,最后当你重新打开LabVIEW时,你会在加载界面会发现它多了模块图标哦~(NI这波是真细啊)下图是我现在手上的电脑安装了DSC模块与real-time模块所多出的两个图标
在这里插入图片描述
如果可以也还请给我点个赞吧~

Pbds全称为Perfectly Balanced Red-Black Tree,是一种平衡查找树的数据结构,它是C++标准库中的`<ext/pb_ds/rb_tree>`模块提供的一种高级模板容器,主要用于高效地存储和查找数据。它是在红黑树基础上进行了优化,保证了常数级的平均时间复杂度。 **特点:** 1. **自平衡**:插入、删除操作后的调整过程保证了树的高度最大为log(n),这使得查询操作的时间复杂度保持在O(log n)。 2. **内存效率高**:支持迭代器,可以像普通的数组或vector一样访问元素。 3. **模板化**:适用于各种数据类型,并支持自定义比较函数。 **实践示例(C++17开始引入std::any,旧版本需第三方库如Boost):** ```cpp #include <ext/pb_ds/tree_policy.hpp> // 引入PBDS策略 using namespace __gnu_pbds; // 使用namespace // 定义一个关联值类型的树模板,键为int,值为std::string template <typename K, typename V> using rb_tree = tree<K, null_type, less<K>, rb_tree_tag, tree_order_statistics_node_update>; int main() { // 创建一个rb_tree实例 rb_tree<int, std::string> myTree; // 插入元素 myTree.insert({5, "Hello"}); myTree.insert({10, "World"}); // 查找最小值 auto it = myTree.begin(); if (it != myTree.end()) { std::cout << "Smallest key is " << *it.first << " with value " << it->second << '\n'; } // 计算第3大的值 auto third_largest = myTree.order_of_key(3); // 获取值为3之前的所有节点个数 if (third_largest > 0) { it = myTree.lower_bound(third_largest); if (it != myTree.end()) { std::cout << "Third largest key is " << *it.first << " with value " << it->second << '\n'; } } return 0; } ``` **相关问题--:** 1. Pbds的红黑树相比标准的红黑树有哪些优势? 2. 如何使用Pbds的rb_tree进行范围查找? 3. 在实际项目中,何时会选择使用Pbds而不是普通的二叉搜索树?
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

just_interests

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值