汉诺塔算法问题的解法(Java)、思路以及举一反三

0 篇文章 0 订阅

首先,先放代码,讲解以及注释将会在后文里单独写出来

public class hnt {
	public static void main(String[] args) {
		hnts("a","b","c",3);
	}
	
	public static void hnts(String from,String temp,String to,int n){
		if(n==1){
			System.out.println(from+"------>"+to);
		}else{
			hnts(from,to,temp,n-1);
			hnts(from,temp,to,1);
			hnts(temp,from,to,n-1);
		}
		
	}
}

原始问题描述(来源百度百科)

相传在古印度圣庙中,有一种被称为汉诺塔(Hanoi)的游戏。该游戏是在一块铜板装置上,有三根柱子(编号A、B、C),在A杆至上而下、由大到小按顺序放置64个金盘(如下图)。游戏的目标:把A杆上的金盘全部移动到C杆子上,并仍保持原有顺序叠好。操作规则:每次只能移动一个盘子,并且在移动过程中三根杆上都始终保持大盘在下,小盘在上,操作过程中盘子可以置于A、B、C任一杆上。

解题思路

    首先,我们先统一一下环境设想,当一个汉诺塔摆在我们面前的时候,我们认定某块圆盘是(任何柱)从上往下数第几块的时候,我们就给这块圆盘设定一个编号为n

    然后给三个柱子设定一个以圆盘为视角的命名,分别是盘子目前所在的地方“from”,盘子想要到达的地方“to”,剩余的另外一个可以作为临时落脚点的柱子“temp”

    

    则概括汉诺塔规律一共分为四步:

            一:当这块圆盘(n)是在最上层的时候,即n==1的时候,则这个盘子就可以直接从from移动到to     

 

            System.out.println(from+"------>"+to);

            二:当这块圆盘(n)不是在最上层的时候,即它上边还有圆盘的时候,我们需要把它上边的那一块圆盘(n-1)先移动到temp上

 

            hnts(from,to,temp,n-1);

            三:当圆盘(n-1)移动到temp之后,这时,圆盘n就会变成n-(n-1)=1,所以此时的圆盘n(现在是1)就可以直接移动到to

 

	    hnts(from,temp,to,1);

            四:当圆盘n(1),移动到to之后,我们就需要把放在temp上的(n-1)移动到to上

 

	    hnts(temp,from,to,n-1);

 

总结以及举一反三

 

这四步其实是我们根据一定的经验和尝试总结的规律。

这道题的思考路线可以总结为一下部分,总结思考路线可以用以帮助我们以后面临同样的问题时,举一反三:

        首先,当我们看到这道题时,我们可以先简单带入1,2个盘子进行尝试,当我们尝试有3个盘子的时候,我们就应该思考一下,这是一道可以用什么方法解决的问题,经过1,2,3个盘子的尝试,我们可以大致发现,这个移动是有一点规律的,好,那么我们就基本可以猜到可以用循环或者递归试试了,但是显然使用循环的话,对盘子的循环跳转控制太弱,所以可以选择使用递归,如果不行就再尝试使用循环。

        既然选择使用递归,那么我们就开始思考,如何去找到这个规律。

        一般递归解决问题的概念大致可以理解为冰箱放大象:打开冰箱门,把大象塞进去,关上冰箱门。  但是其中过程是怎么塞进去的,怎么关上门的,我们不用过多思考,我们只需要给它一个开始(传参),和一个结束(出口)。所以此时我们就可以找到如上文所述的四个解决步骤。利用这四个步骤我们就可以找到问题的解决方案。

 

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值