分治策略之循环赛
更新日志:
- 2024年10月9日文章重构
题目描述
设有nnn个运动员要进行网球循环赛。设计一个满足下列条件的比赛日程表:
任意运动员的地位都是对等的,所以此问题是存在问题,只需找出存在的解即可。
思考:如果增加限制条件呢?所有满足条件的比赛日程表有多少个?
- 每个运动员必须与其他n−1n-1n−1个运动员各赛一次;
- 每个运动员一天只能赛一次;
解决方案要求
- 使用分治策略,编写程序完成以上题目。
- 设置数据集、测试程序,写出测试报告。
- 验证算法的正确性。
- 写出题目的具体分析过程,算法程序进行必要的解析(伪代码+源代码)。
- 分析所完成程序的时间复杂度。
解决方案
题目分析
特殊情况,运动员数nnn为2的幂次
运动员数为2k2^k2k,直接二分。
比赛方案可以使用二维矩阵表达:
- 二维矩阵f[i][j]∈[1,n]∪{−}f[i][j]\in[1,n] \cup\{-\}f[i][j]∈[1,n]∪{−},i,j∈[1,n]i,j\in[1, n]i,j∈[1,n]
- f[i][1]=if[i][1]=if[i][1]=i,第一列表示运动员序号
- 列数j,j>1j, j>1j,j>1表示第j−1j-1j−1天的比赛安排
- 假设s=f[i][j]s=f[i][j]s=f[i][j],则运动员iii和运动员sss在第j−1j-1j−1天对战;特别地,f[i][j]=−f[i][j]=-f[i][j]=−表示运动员iii在第j−1j-1j−1天休息
例如对于n=4n=4n=4,下图左上角表示:
- 第111天,运动员111和运动员222对战,运动员333和运动员444对战;
- 第222天,运动员111和运动员333对战,运动员222和运动员444对战;
- 第333天,运动员111和运动员444对战,运动员222和运动员333对战;

完全使用分治策略,问题规模最小是n=2n=2n=2,可以直接构建比赛集,然后合并。将本模块,挪动到对角线位置,构成新的一个整体模块。
运动员数为2的幂次求解方案符合最基本的二分策略,不在此赘余。下面我将这种特殊情况,扩展到更一般情况,nnn可以是任意整数。
一般情况,运动员数nnn是任意整数
f(n)={n−1,n为偶数n,n为奇数 f(n)=\left\{ \begin{array}{lr} n-1 &, n为偶数 \\ n &, n为奇数 \end{array} \right. f(n)={n−1n,n为偶数,n为奇数
nnn位奇数时,比赛天数为nnn,每个运动员都有111天的休息时间。
nnn位偶数时,比赛天数为n−1n-1n−1天,所有运动员每天都有比赛。
分治算法的特点是:
- 问题可以分解
- 子问题是独立的
- 子问题的解可以合并
分支算法一般使用递归解决,递归算法一定有终止条件,我们可以从递归函数的终止条件思考。
从递归终止条件看,使用脑算,计算运动员的比赛规则表:
n=2n=2n=2,比赛需要111天,比赛日程表如下:
| playerthplayer_{th}playerth | 1 |
|---|---|
| 1 | 2 |
| 2 | 1 |
n=3n=3n=3,比赛需要3天,比赛日程表如下:
| playerthplayer_{th}playerth | 1 | 2 | 3 |
|---|---|---|---|
| 1 | 2 | 3 | - |
| 2 | 1 | - | 3 |
| 3 | - | 1 | 2 |
比赛的总时间是333天,在这三天中,每个运动员都有一天的休息时间,并且他们每个人的休息时间都不在同一天。
n=4n=4n=4,比赛需要 333天,比赛日程表如下:
| playerthplayer_{th}playerth | 1 | 2 | 3 |
|---|---|---|---|
| 1 | 2 | 3 | 4 |
| 2 | 1 | 4 | 3 |
| 3 | 4 | 1 | 2 |
| 4 | 3 | 2 | 1 |
比赛总天数是333天,4=2+24=2+24=2+2,分成单独的两个队伍,队伍内先比赛,然后每个队员与另一个队伍中的每个运动员比赛。
对比n=4n=4n=4和n=3n=3n=3,n=4n=4n=4这一行删除,并且把表格中的444删除,就得到了表格n=3n=3n=3
n=5n=5n=5,比赛的总天数是555天,此时已经发现,没有前几个nnn比较小的时候容易写了,需要使用有效的策略。
n=5n=5n=5规模对于我来说太大了,先跳过吧。
n=6n=6n=6,分成两组3+33+33+3,每一组比赛的时间是333天,合并两组需要333天,总共666天。合并方式:对角线填充。如何减少一天呢?
| playerthplayer_{th}playerth | 1 | 2 | 3 |
|---|---|---|---|
| 1 | 2 | 3 | - |
| 2 | 1 | - | 3 |
| 3 | - | 1 | 2 |
| 4 | 5 | 6 | - |
| 5 | 4 | - | 6 |
| 6 | - | 4 | 5 |
两组333天内的比赛,我们看到这是两组一模一样的表,111和444,222和555,333和666都有在同一天休息。让他们把空闲的时间利用起来。
| playerthplayer_{th}playerth | 1 | 2 | 3 |
|---|---|---|---|
| 1 | 2 | 3 | 4 |
| 2 | 1 | 5 | 3 |
| 3 | 6 | 1 | 2 |
| 4 | 5 | 6 | 1 |
| 5 | 4 | 2 | 6 |
| 6 | 3 | 4 | 5 |
剩下222天需要完成的比赛:
111对战555 666
222对战444 666
333对战444 555
小规模的问题,可以直接心算,获得最后两天的比赛安排:
第444天
111vs555 222vs666 333vs444
第555天
111vs666 222vs444 333vs555
汇总比赛安排表:
| playerthplayer_{th}playerth | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 |
| 2 | 1 | 5 | 3 | 6 | 4 |
| 3 | 6 | 1 | 2 | 4 | 5 |
| 4 | 5 | 6 | 1 | 3 | 2 |
| 5 | 4 | 2 | 6 | 1 | 3 |
| 6 | 3 | 4 | 5 | 2 | 1 |
转过头来,再考虑n=5n=5n=5,就简单多了,直接把第666行删除,然后把表格中的666删除就ok了。
| playerthplayer_{th}playerth | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | - |
| 2 | 1 | 5 | 3 | - | 4 |
| 3 | - | 1 | 2 | 4 | 5 |
| 4 | 5 | - | 1 | 3 | 2 |
| 5 | 4 | 2 | - | 1 | 3 |
n=7n=7n=7,在n=8n=8n=8的基础上删减
n=8n=8n=8
2的3次幂,太简单了,见上文第一个图。
n=9n=9n=9依托于n=10n=10n=10的计算
n=10n=10n=10可以分成5+55+55+5,两个形状完全一样的表格,填补。然后在根据一定的算法补充后4天的表格。
以上,我们可以得到规律:对于n=2kn=2kn=2k,通过适当的删除,我们可以直接得到n=2k−1n=2k-1n=2k−1的比赛表;而n=2kn=2kn=2k时可以分治为n+nn+nn+n两组合并来求。
下面我们对合并算法进行探究
以n=6n=6n=6为例

在接下来的222天,还需要完成的比赛
运动员111:555、666
运动员222:444、666
运动员333:444、555
第444天:运动员111选了555(从小到大),运动员222选666(5+15+15+1) ,从下一位开始,运动员333选444(7−37-37−3)。
第555天:运动员111选了666,运动员222选444(7−37-37−3),运动员333选555(8−38-38−3)。
规划完毕,填充比赛规划表格:

n=10=5+5n=10=5+5n=10=5+5,对于n=5n=5n=5的表格,已经在上述得到,对n=6n=6n=6进行掏空就行。

首先两组互相填补空闲时间(不能让运动员歇息一天,狠狠地push)。
得到如下表格,是前555天的比赛表:

在接下来的444天时间,需要比赛:
运动员111:777、888、999、101010
运动员222:666、888、999、101010
运动员333:666、777、999、101010
运动员444:666、777、888、101010
运动员555:666、777、888、999
第666天:运动员1−51-51−5分别安排对战 7、8、9、10、67、8、9、10、67、8、9、10、6
第777天:8、9、10、6、78、9、10、6、78、9、10、6、7
第888天:9、10、6、7、89、10、6、7、89、10、6、7、8
第999天:10、6、7、8、910、6、7、8、910、6、7、8、9
总表如下:

因此n=10n=10n=10的情况也得到了。
以每组首个运动员第一个需要比赛的运动员为起点,形成一个环。观察下面两图,可以看到规律。


策略证明:待补充…,联系作者邮箱,共同完成,xing.xiaolin@foxmail.com
将以上规律进行推广
设f(m,n)f(m,n)f(m,n)表示对运动员序号为[m,n][m,n][m,n]比赛表的生成。
例如n=50n=50n=50,使用分治策略,分别是f(1,25)和f(26,50)f(1, 25)和f(26, 50)f(1,25)和f(26,50),第二个表就是对第一个表中所有数字+25+25+25。因此问题分治成求f(1,25),然后和f(26,50)f(1, 25),然后和f(26, 50)f(1,25),然后和f(26,50)合并。
以下是这个问题的递和归过程。
step 1: f(1,50) → f(1,25) U f(26,50) step 18: 输出结果,结束。
step 2: f(1,25) → f(1,26) - f(26) step 17: 根据f(1,25)直接写出f(26,50),合并为f(1,50)
step 3: f(1,26) → f(1,13) U f(14,26) step 16: f(1,26)删减为f(1,25)
step 4: f(1,13) → f(1,14) - f(14) step 15: 根据f(1,13)直接写出f(14,26),合并为f(1,26)
step 5: f(1,14) → f(1,7) U f(8,14) step 14: f(1,14)删减为f(1,13)
step 6: f(1,7) → f(1,8) - f(8) step 13: 根据f(1,7)直接写出f(8,14),合并为f(1,14)
step 7: f(1,8) → f(1,4) U f(4,8) step 12: f(1,8)删减为f(1,7)
step 8: f(1,4) → f(1,2) U f(3,4) step 11: 根据f(1,4)直接写出f(5,8)合并为f(1,8)
step 9: 直接计算 f(1,2),根据f(1,2)直接写出f(3,4) step 10: 合并 f(1,2) f(3,4) 得到 f(1,4)
nnn可以扩展所有可计算范围:
当nnn为奇数时,通过计算f(1,n+1)f(1,n+1)f(1,n+1),然后删减n+1n+1n+1得到
当nnn为偶数时,二分,只计算前半部分,后半部分,可以直接“抄袭”前半部分😁
接下来是合并算法,根据上面的处理情况得知,前半部分和后半部分永远是等大的(因为采取二分策略的时候nnn是偶数)。
当半个部分大小是偶数时,可以直接复制到对角线就OK。
当半个部分大小是奇数的,稍微困难一点,但是还是有规律可循。
首先,两个部分都在相同的位置存在空闲,因此让对应部分相互比赛,如下图

首先填补前5天的空闲时间后得到

然后填充后4天的表格,我填写情况如下

我们只需填写1−51-51−5号运动员,那么对应的6−106-106−10号运动员也就直接填写完毕。
看第6−96-96−9天,纵向看可以发现:7、8、9、10、67、8、9、10、67、8、9、10、6围成了一个环,后面的时间都是从前一个的头结点的下一个为头节点,开始循环。
所以我们只需要找到第666天的头就行了,第666天的头是7=1+67=1+67=1+6(我们看到其实第一排是有序的1−101-101−10),所以算法分析到此结束。
代码实现
伪代码
void raceTable(int left,int right) //待求的左边界和右边界
{
if(size==2)
{
填表格,结束
}
if(size为奇数)
{
计算 raceTable(pos,size+1);
}
else{
raceTable(pos,size/2); //分治策略,计算前半部分
copyTable(pos,right); //根据上式前半部分的计算,直接写出后半部分。
Union(pos,size/2);//合并两部分
}
}
void Union(int left,int mid,int right)
{
if(mid为奇数)
两组相对于,填补前n天的空闲时间;
循环左下边放入到右上角,同时放置对应的右下角(同时进行的)
}
void copyTable(pos,right)
分模块完成代码
(1) 生成比赛表函数
void raceTable(int left,int right)
{
int size=right-left+1;
if(size==2) //递归终点
{
arr[left][1]=right;
arr[right][1]=left;
return;
}
if(size%2==1) //当前计算规模是奇数,我们计算大一个规模
{
raceTable(left,right+1);
return;
}
//以下是size是2的倍数
int mid=(left+right)/2;
raceTable(left,mid);
copyTable(left,mid,right); //直接复制上面计算得到的
Union(left,mid,right);
}
(2) copyTable函数,根据前半部分直接完成后半部分
void copyTable(int left,int mid,int right) //复制函数
{
int size=right-left+1;
int i,j,m;
if(size%2==1) //奇数
m=size;
else
m=size-1;
for(i=right;i>mid;i--)
for(j=1;j<=m;j++)
arr[i][j]=arr[i-mid][j]+mid;
}
(3) 合并函数,将前半部分和后半部分合并
void Union(int left,int mid,int right)
{
int i,j;
int size=right-left+1;
if(mid%2==1) //如果size为奇数,需要首先填补前几天的空白
{
for(i=left;i<=mid;i++)
for(j=1;j<=size;j++)
{
if(arr[i][j]>mid) //这个位置是空的
{
arr[i][j]=i+mid;
arr[i+mid][j]=i;
break;
}
}
}
//下面开始合并
if(mid%2==0) //每一半都是偶数,直接移到对角线
{
for(j=mid;j<right;j++)
for(i=1;i<=mid;i++)
{
int t=arr[i+mid][j-mid];
arr[i][j]=t;
arr[t][j]=i;
}
}
else{
//结合规律,开始合并
for(j=mid+1;j<right;j++)
for(i=1;i<=mid;i++)
{
int t=i+j;
if(t>right)
t-=mid;
arr[i][j]=t;
arr[t][j]=i;
}
}
}
//需要将arr的0位置初始化,以便来完成上述移动
for(int i=1;i<=n;i++)
arr[i][0]=i;
完整源代码
#include <iostream>
#include <cstdio>
using namespace std;
const int maxn=1005;
int arr[maxn][maxn]={0};
int n;
bool isCorrect()
{
int i,j;
int days;
if(n%2==0)
days=n-1;
else
days=n;
bool isAppearence[n+1];
for(i=1;i<=n;i++) //行
{
fill(isAppearence,isAppearence+n+1,false); //初始化数组
for(j=1;j<=days;j++)
{
int t=arr[i][j];
if(t==0)
continue;
if(isAppearence[t]) //在这一行中之前已经出现过了
return false;
isAppearence[t]=true;
if(arr[t][j]!=i || t>n || t<1 ) //运动员t在第j天的对手必须是i,t必须是正确运动员1~n
return false;
}
}
return true;
}
void Union(int left,int mid,int right)
{
int i,j;
int size=right-left+1;
if(mid%2==1) //如果size为奇数,需要首先填补前几天的空白
{
for(i=left;i<=mid;i++)
for(j=1;j<=size;j++)
{
if(arr[i][j]>mid) //这个位置是空的
{
arr[i][j]=i+mid;
arr[i+mid][j]=i;
break;
}
}
}
//下面开始合并
if(mid%2==0)
{
for(j=mid;j<right;j++)
for(i=1;i<=mid;i++)
{
int t=arr[i+mid][j-mid];
arr[i][j]=t;
arr[t][j]=i;
}
}
else{
//结合规律,开始合并
//size=6 mid=3 left=1 right=6
for(j=mid+1;j<right;j++)
for(i=1;i<=mid;i++)
{
int t=i+j;
if(t>right)
t-=mid;
arr[i][j]=t;
arr[t][j]=i;
}
}
}
void copyTable(int left,int mid,int right) //复制函数
{
int size=right-left+1;
int i,j,m;
if(size%2==1) //奇数
m=size;
else
m=size-1;
for(i=right;i>mid;i--)
for(j=1;j<=m;j++)
arr[i][j]=arr[i-mid][j]+mid;
}
void raceTable(int left,int right)
{
int size=right-left+1;
if(size==2)
{
arr[left][1]=right;
arr[right][1]=left;
return;
}
if(size%2==1)
{
raceTable(left,right+1);
return;
}
//以下是size是2的倍数
int mid=(left+right)/2;
raceTable(left,mid);
copyTable(left,mid,right); //直接复制上面计算得到的
Union(left,mid,right);
}
int main() {
cin>>n;
for(int i=1;i<=n;i++)
arr[i][0]=i;
raceTable(1,n);
int t=n%2==0?n-1:n;
for(int i=1;i<=n;i++)
{
printf("%d: ",i);
for(int j=1;j<=t;j++)
{
if(arr[i][j]==n+1) //空闲时间
arr[i][j]=0;
printf(" %d",arr[i][j]);
}
printf("\n");
}
if(isCorrect())
cout<<"true"<<endl;
else
cout<<"false"<<endl;
return 0;
}
算法正确性测试
nnn为奇数,比赛在nnn天内完成;
nnn为偶数,比赛在n−1n-1n−1天内完成。
- 对于每iii行,1−n1-n1−n除了iii必须都出现,并且只出现111次;
- 如果某一天iii和sss比赛,那么也一定是sss和iii比赛,即若f[i][j]=sf[i][j]=sf[i][j]=s,则f[s][j]=if[s][j]=if[s][j]=i
- 每个运动员每天只能比赛一次,列表示为天数,那么每列每个运动员编号不能出现两次。考虑到,如果某列一个运动员出现了不少于2次,而该运动员当天比赛的队伍的格子只能是一个队伍,这与条件2矛盾,可以认为,如果不满足条件3则一定不满足条件2,因此可以不必判断条件3。
- 必须保证出现在表格中的运动员编号是有效的,即[1,n][1, n][1,n],不是这个范围内的数则输出错误信息。
以下是判断算法正确性的代码
int n;
int arr[maxn][maxn];
bool isCorrect()
{
int i,j;
int days;
if(n%2==0)
days=n-1;
else
days=n;
bool isAppearence[n+1];
for(i=1;i<=n;i++) //行
{
fill(isAppearence,isAppearence+n+1,false); //初始化数组
for(j=1;j<=days;j++)
{
int t=arr[i][j];
if(t==0) //空闲时间的标志
continue;
if(isAppearence[t]) //在这一行中之前已经出现过了
return false;
isAppearence[t]=true;
if(arr[t][j]!=i || t>n || t<1 ) //运动员t在第j天的对手必须是i,t必须是正确运动员1~n
return false;
}
}
return true;
}
测试
nnn取2−10002-10002−1000,使用上述测试算法,输出测试结果,确保全部输出为True。
{
int i;
for(i=2;i<=1000;i++)
{
fill(arr,arr+maxn*maxn,0);
raceTable(1,i);
if( isCorrect() )
printf("True\n");
else
printf("False\n");
}
}
输出结果为100个True。
算法时间复杂度分析
此题目是二维矩阵,对于n,很容易知道时间复杂度下限是Ω(n2)Ω(n^2)Ω(n2)
nnn为奇数f(n)=f(n+1)f(n) = f(n+1)f(n)=f(n+1)
nnn为偶数 f(n)=f(n/2)+(n/2)×(n/2)+2×(n/2)×(n/2)f(n) = f(n/2) + (n/2)×(n/2) + 2×(n/2)×(n/2)f(n)=f(n/2)+(n/2)×(n/2)+2×(n/2)×(n/2)
因此可以递推得到时间复杂度是O(n2)O(n^2)O(n2)
验证算法正确性是对一个二维矩阵的枚举过程,时间复杂度O(n2)O(n^2)O(n2)。
本文介绍了一种基于分治策略设计网球循环赛程的方法,适用于任意数量的参赛者,确保每位选手都能与其他选手各赛一次,同时遵循每位选手每日只能比赛一次的规则。文章详细解释了算法原理,提供了伪代码与C++实现代码,以及算法正确性和时间复杂度的分析。
6374





