自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

ai agent知识

分享日常开发心得,附代码示例,有AI方面的学习课程哦!

  • 博客(29)
  • 收藏
  • 关注

原创 直接安装python语言,运行你的第一行代码

本文介绍了Python快速入门指南:全文提供了从安装到运行首个程序的完整步骤,适合零基础初学者快速上手。

2025-06-08 22:04:33 303

原创 Python环境搭建:pyenv-win的使用指南

一起来探索pyenv-win——这个在Windows系统上管理Python版本的得力工具。

2025-06-08 21:53:30 935

原创 PostgreSQL进阶:视图、事务、窗口函数与继承

摘要:本文介绍了PostgreSQL的四个核心特性:1.视图(View) - 封装复杂查询为虚拟表,简化重复操作并隔离表结构变更;2.事务(Transaction) - 通过BEGIN/COMMIT机制保证数据操作的原子性,支持保存点实现部分回滚;3.窗口函数(Window Function) - 在保留原行数据的同时进行分组统计,支持排序和排名等复杂分析;4.表继承(Inherits) - 子表自动继承父表结构,支持多态查询(ONLY关键字)实现数据分类管理。这些特性共同增强了数据库的查询效率、数据完整性

2025-05-29 20:18:13 1300

原创 PostgreSQL的聚集函数

PostgreSQL的聚集函数(如count、sum、avg、max、min)能高效处理数据统计需求。通过WHERE子句实现预筛选,GROUP BY进行分组统计,HAVING过滤分组结果,FILTER实现精细化计算控制。这些功能组合使用可精准完成数据筛选、分组和统计分析,提升数据处理效率,是数据分析中的实用工具。合理运用这些技巧能让数据库查询更加灵活高效。

2025-05-29 20:13:57 569

原创 深入理解 SQL 的 JOIN 查询:从基础到高级的第一步

摘要:SQL中的JOIN操作用于关联多个表的数据查询,包括内连接(JOIN)、外连接(LEFT/RIGHT/FULL JOIN)和自连接(Self Join)。内连接基于匹配条件合并行;外连接保留未匹配的行(显示NULL值);自连接则将表与自身关联。JOIN查询需注意列名冲突,建议明确指定输出列而非使用SELECT *。这些操作能灵活处理复杂数据需求,是数据库查询的重要工具。

2025-05-29 20:12:26 736

原创 PostgreSQL查询一个表的数据

本文介绍了SQL SELECT语句的基本用法,主要包括三个方面:1)通过"SELECT * FROM table"格式查询所有列数据;2)使用表达式计算并重命名列(如计算平均温度);3)添加WHERE条件筛选数据(如查询特定城市)和ORDER BY排序结果(支持多列不同排序方式)。文章以包含北京、上海等城市天气数据的weather表为例,演示了各种查询操作,包括条件组合(AND/OR)、去重(DISTINCT)等实用技巧。通过具体SQL示例,清晰展示了如何灵活检索和加工数据库信息。

2025-05-29 20:09:19 329

原创 PostgreSQL如何更新和删除表数据

摘要:本文介绍了SQL中UPDATE和DELETE命令的使用方法。UPDATE用于修改数据(如将杭州5月12日气温降低2度),DELETE用于删除数据(如删除杭州的所有天气记录)。特别警告不带WHERE条件的DELETE会清空整张表,建议使用TRUNCATE命令进行表清空操作。

2025-05-29 20:06:23 351

原创 表中如何插入数据!扩展技能边界

摘要:文章介绍了SQL中三种插入数据的方法:1) 按顺序插入整行数据,需匹配列顺序,示例展示了向天气表和城市表插入数据;2) 指定列名插入,可省略部分字段,未指定列将置为NULL;3) 使用COPY命令从文件批量导入数据,支持多种格式和参数设置(如分隔符、编码)。所有操作后都建议使用SELECT查询验证结果。文章强调了非数字值需用单引号包裹,并提及了日期函数的灵活性。

2025-05-29 20:03:11 287

原创 PostgreSQL学会如何建表

本文介绍了PostgreSQL的基本使用。首先说明了PostgreSQL采用客户端/服务器模型,介绍了常用客户端工具pgAdmin和命令行工具。接着讲解了如何创建数据库和表,包括数据库创建命令、表结构定义语法及数据类型选择。文中通过创建weather和cities两个表示范了建表过程,并说明了删除表或数据库的方法。最后提到PostgreSQL支持标准SQL类型和自定义数据类型,大小写不敏感,命令以分号结束。为后续讲解数据操作和查询奠定基础。

2025-05-29 19:12:18 1145

原创 PostgreSQL安装

本文介绍了PostgreSQL数据库在Windows系统上的安装和使用方法。主要内容包括:1)从官网下载安装包并完成安装配置;2)使用自带的pgAdmin4客户端工具;3)将界面语言设置为中文的操作;4)执行简单的SQL查询语句示例。文章还提供了PostgreSQL中文文档的链接,适合初学者快速入门PostgreSQL数据库的使用。

2025-05-29 19:01:18 489

原创 LangGraph:部署智能应用

LangGraph为智能应用部署提供了一套完整解决方案。通过简单的命令行工具即可创建项目(如langgraph new)、安装依赖(pip install -e .)并启动服务(langgraph dev)。其支持本地开发和生产环境部署,提供可视化界面便于调试管理。开发者只需在模板文件中添加业务逻辑(如天气查询功能),就能快速构建智能应用。整个流程从初始化到上线运行都高度自动化,显著降低了智能应用的部署门槛。

2025-05-24 19:24:50 346

原创 LangGraph的智能评估

本文介绍了LangGraph评估系统的完整流程,通过四个关键步骤实现对智能应用的全面评估。首先创建测试数据集(如使用LangSmith管理问答数据),其次定义目标函数调用智能应用,然后使用OpenEvals构建评估器进行结果比对,最后运行评估并分析结果。该系统通过自动化测试和反馈机制,可精准定位智能应用的优缺点,为优化提供数据支持。文中还展示了代码实现示例,并指出可能遇到的技术问题(如国内大模型参数兼容性问题),为开发者提供了实用参考。整个评估过程如同给智能应用做"体检",确保其健康高效

2025-05-24 18:51:43 628

原创 LangGraph实现多智能体的方法

LangGraph提供了两种多智能体架构:监督者(Supervisor)和群体(Swarm)。监督者架构通过中央智能体协调任务分配,如预订旅行时分别调用酒店和航班助手;群体架构则让智能体根据任务需求动态协作,通过交接机制传递控制权。文中展示了两个Python示例:监督者模式下中央智能体按需分配任务,群体模式下智能体自行转交控制权。这两种架构都能有效处理复杂任务,其中交接机制(Handoffs)是实现智能体间无缝协作的关键技术。

2025-05-24 18:20:31 981

原创 LangGraph:人工干预与自动化结合

LangGraph引入人工干预机制,提升智能对话系统的灵活性。通过interrupt工具,系统可在执行任务时暂停并等待用户输入,实现人机协作。例如在酒店预订场景中,用户可手动修改酒店名称。LangGraph还提供add_human_in_the_loop方法,便于将人工干预功能集成到现有工具中,无需重构系统。这种机制结合了机器高效性和人类判断力,优化了用户体验。

2025-05-24 17:45:57 979

原创 LangGraph 实战指南:长期记忆管理

本文介绍了LangGraph为智能对话系统设计的记忆机制,包含短期记忆(会话级)和长期记忆(跨会话)。长期记忆通过命名空间和键值对存储用户信息,支持读写操作和语义搜索。文章通过三个Python示例演示了:(1)保存用户信息到内存存储;(2)读取已存储的用户数据;(3)基于内容相似性搜索记忆项。这些功能通过InMemoryStore实现,并可与大语言模型(如通义千问)结合构建智能对话系统,展示了LangGraph在维护对话上下文和个性化服务方面的应用潜力。

2025-05-24 16:20:54 681

原创 Git 实用指南:从新手到熟练掌握

这篇文章为初学者或需要快速回顾 Git 操作的人提供了简洁的指南。文章首先介绍了 Git 的基本概念,接着详细讲解了如何初始化本地仓库、添加文件到暂存区、提交代码等基础操作。随后,文章介绍了如何查看提交状态和历史、回退到过去的版本,以及与远程仓库同步的方法。此外,文章还涵盖了分支管理的基本操作,如创建、切换、查看和合并分支。最后,文章简要介绍了 SSH 配置,以确保代码上传的安全性。通过掌握这些核心操作,读者可以有效地使用 Git 来管理项目代码。

2025-05-18 17:18:25 496

原创 智能对话系统的短期记忆管理:LangGraph 实战指南

本文介绍了如何使用 LangGraph 管理智能对话系统中的短期记忆,以实现流畅、连贯的对话。短期记忆通过跟踪对话历史记录来帮助智能体在多轮对话中保持上下文。LangGraph 提供了两种主要方式来优化短期记忆管理:总结和修剪消息历史记录。通过实际代码示例,本文展示了如何创建智能体并配置短期记忆工具,如 checkpointer 和 thread_id,以确保对话的连续性。此外,文章还详细讲解了如何使用 SummarizationNode 和 trim_messages 函数来总结和修剪消息历史记录,从而避

2025-05-17 17:45:38 1000

原创 深入探索 LangGraph构建智能体与上下文管理的艺术

本文介绍了如何利用LangGraph框架构建智能体,并通过实际代码示例展示了上下文管理的三种方式:配置(静态上下文)、状态(可变上下文)和记忆(跨对话上下文)。首先,选择或定义模型(如阿里云的Tongyi大模型),定义工具函数,构建智能体并调用。示例中,智能体通过工具函数获取中国工商银行的保险信息。接着,文章详细说明了如何通过配置和状态管理上下文,包括自定义提示词和在工具中访问上下文。通过这些方法,智能体能够更好地理解和响应用户需求,实现高效、智能的交互。

2025-05-17 15:53:19 916

原创 服务器安装缺失的字体

本文介绍了在Linux服务器上安装和管理字体的步骤。首先,通过命令行进入系统的字体目录,然后创建一个新的字体目录(如Wingdings)。接着,将Windows系统中的字体文件上传到该目录。文章还提供了相关的命令行操作,包括解压字体文件、删除压缩包、修改文件权限、刷新字体缓存以及查看字体列表等。这些步骤帮助用户在Linux环境中成功安装和使用字体。

2025-05-12 01:56:56 200

原创 LangGraph框架中怎样定义工具tools

工具是一种封装函数及其输入模式的方法,可以将其传递给支持工具调用的聊天模型。这使得模型能够通过特定的输入请求执行该函数。

2025-05-05 16:11:59 899

原创 使用LangGraph调用大模型:智能体流式输出

要流式传输agent输出方式,将stream()或astream()方法与结合使用stream_mode=“updates”。这将在agent每个步骤后发出一个事件.

2025-05-05 01:25:59 444

原创 使用LangGraph调用大模型:agent的各种执行方式

agent同步和异步执行,使用.invoke() / await .invoke() 表示完整响应,使用.stream() /.astream()表示增量流式输出。为了控制代理执行时避免无限循环,需要设置递归限制

2025-05-04 23:38:57 809

原创 使用LangGraph调用大模型:结构化输出特定模式

使用Pydantic模型或定义TypedDict,自定义agent结构化输出

2025-05-04 22:39:39 419

原创 使用LangGraph调用大模型:增加短期记忆

若要与agent进行多轮对话,在创建agent时,使用的是检查点包下的InMemorySaver,检查点在本示例代码中作为短期记忆。

2025-05-04 22:08:34 350

原创 使用LangGraph调用大模型:定义动态提示词

agent由三个组件组成:大型语言模型 (LLM) 、一组可以使用的工具以及提供指令的提示

2025-05-03 23:09:29 495

原创 使用LangGraph调用大模型:定义静态提示词

简单的使用阿里Tongyi大模型

2025-05-03 23:04:57 432

原创 MCP代码示例:使用python 利用LangGraph简单演示

python代码演示实现mcp, 使用LangGraph

2025-04-30 15:44:27 451

原创 学习的遗憾与坚持:技术成长的必经之路

   今天我才发现,学过的东西在一年时间里,你若不用,他就会消失在你的脑海里。

2018-12-07 20:23:51 410

原创 我的 UNIX 常用的指令

UNIX 常用的指令:以下只说明各指令的基本用法, 若需详细说明, 请用man 去读详细的 manual.a. 关于档案/目录处理的指令:ls这是最基本的档案指令。 ls 的意义为 “list”,也就是将某一个目录或是某一个档案的内容显示出来。如果你在下 ls 指令后头没有跟著任何的档名,它将会显示出目前目录中所有档案。也可以在 l...

2018-12-07 17:42:51 206

pyenv-win-master.zip

对于许多初学者来说,Python版本的混乱管理往往让人头疼。pyenv-win应运而生,它是一个功能强大的Python版本管理工具,让我们能够在同一台机器上轻松切换不同版本的Python,满足各种项目的需求。

2025-06-08

【计算机与证券分析】2025年五大AI应用领域发展趋势及投资机会分析:端侧Agent、营销技术、企业决策、CRM、实时互动

报告详细分析了2025年有望成为爆款的五大AI应用场景:端侧Agent、营销技术Mar-tech、企业方案决策、客户关系管理(CRM)、实时互动RTE。端侧Agent方面,Anthropic的Claude 3.5 Sonnet和智谱的AutoGLM展示了出色的计算机和手机使用能力。营销技术方面,Applovin的Axon推荐引擎和汇量科技的Mintegral平台通过AI实现精准广告投放和智能出价。企业方案决策方面,Palantir的AIP平台和第四范式的先知AI平台助力企业和政府进行数据驱动的决策。CRM方面,Salesforce的Agentforce和微盟集团的AI Agent提升了客户管理和营销效率。实时互动方面,声网Agora通过Conversational AI SDK和RTE+AI能力全景图,增强了实时音视频互动的质量和功能。 适合人群:对AI技术和应用感兴趣的投资者、行业分析师、科技公司高管及研发人员。 使用场景及目标:①了解AI在端侧Agent、营销技术、企业决策、CRM和实时互动领域的最新进展;②评估潜在投资机会和技术合作可能性;③为企业制定AI应用战略提供参考。 其他说明:报告指出,尽管AI应用前景广阔,但仍存在模型迭代速度、场景结合进展和下游行业景气度等不确定性风险。投资者和企业应密切关注市场动态和技术进步,以抓住AI带来的机遇。

2025-05-09

全球人工智能简史:2024年发展趋势与展望

文章回顾了全球人工智能(AI)的发展历程,从19世纪语义学的起源到21世纪大型语言模型(LLM)和生成式人工智能(GenAI)的兴起。它详细介绍了关键人物如艾伦·图灵、杰弗里·辛顿等对AI发展的贡献,以及重要技术如感知器、Transformer、BERT、GPT系列、LoRA和QLoRA等的演变。文章还探讨了AI在自然语言处理(NLP)、计算机视觉、语音识别等多个领域的应用,并分析了AI在企业中的应用现状和面临的挑战,如数据质量、基础设施、道德和法规问题。此外,文章还展望了未来的AI趋势,包括多模态AI、小型化和开源模型的进步、虚拟代理的增强以及监管环境的变化。 适用人群:对人工智能发展历史感兴趣的读者、从事AI及相关技术领域的研发人员、希望了解AI技术应用和未来趋势的企业管理者和技术决策者。 使用场景及目标:①了解AI技术从起源到现代的发展脉络;②掌握AI技术在各个领域的具体应用场景;③评估AI技术对企业和社会带来的影响及潜在风险;④探讨AI技术的未来发展方向,特别是在多模态、小型化、开源和法规监管等方面。 阅读建议:本文内容详实,涵盖AI技术发展的多个方面,建议读者在阅读时重点关注各个发展阶段的关键技术和人物,以及AI技术在实际应用中的挑战和未来趋势。对于技术细节,可以结合自身背景进行深入研究,而对于AI的伦理和法规问题,则应保持警觉,思考其对企业和社会的影响。

2025-05-09

大模型安全研究报告(2024年)总结

本文档由阿里云计算有限公司与中国信息通信研究院共同编制,旨在探讨大模型在人工智能领域的安全挑战与机遇。文章首先回顾了大模型技术的演进历程,指出从2017年基于Transformer的预训练语言模型到2024年多模态大模型的发展趋势。接着,文章分析了大模型面临的四大安全挑战:训练数据、算法模型、系统平台和业务应用的安全风险。针对这些挑战,文中提出了涵盖安全目标、安全属性、保护对象、安全措施的大模型自身安全框架,以及大模型赋能安全框架。此外,文章详细介绍了大模型在网络安全、数据安全、内容安全等领域的具体应用,如智能威胁情报生成、自动化漏洞挖掘、智能钓鱼邮件检测等。最后,文章展望了大模型技术的未来发展,强调了构建多层次治理体系和创新安全技术的重要性。 适合人群:对大模型技术及其安全问题感兴趣的科研人员、技术人员、政策制定者及相关行业的从业者。 使用场景及目标:①帮助读者理解大模型技术的发展现状及其面临的多重安全挑战;②为从事大模型研发和应用的专业人士提供一套全面的安全框架和技术指南;③为政策制定者提供制定大模型安全治理政策的参考依据。 其他说明:报告强调了大模型技术在提升智能水平的同时,也带来了新的安全风险。为了有效防范这些风险,报告提出了构建多层次治理体系和创新安全技术的建议,以确保大模型技术的健康发展。

2025-05-09

【人工智能投资】AGI投资框架解析:核心技术要素与应用场景评估体系构建

本文详细探讨了AGI(通用人工智能)投资的框架逻辑,旨在为投资机构和企业提供决策依据。文章首先回顾了人工智能的发展历程,并指出当前技术如ChatGPT、MidJourney等带来的革命性变化。接着,文章围绕三大关键生产要素(算力、模型、数据)、四大核心价值(容错性、通用性、成本效益、场景扩展)、五个重点研究领域(感知、理解、预测、执行、进化)、六层产业链架构(数据采集、算力管理、开发工具、模型训练、应用开发、硬件设备)、七大典型应用场景(NLP、音频、图像、视频、编程、设计、机械控制)以及八种团队必需能力(跨领域学习、深度思考、质量效率、需求匹配、架构设计、资源协调、基础研究、战略战术)进行了系统阐述。此外,文章还分析了不同应用场景下的市场现状和发展机遇,强调了数据处理、算力优化的重要性,并对未来发展趋势做出预测。 适用人群:对AGI领域感兴趣的投资者、创业者、技术研发人员及企业管理者。 使用场景及目标:①帮助投资者评估AGI项目的潜在价值;②指导初创企业在AGI领域寻找合适的切入点;③为技术管理者提供战略规划和团队建设的参考;④促进对AGI技术的理解,推动相关产业的发展。 其他说明:本文仅为研究分享,不构成具体投资建议。ValueZ是一家专注于科技投资和企业战略咨询的智库,致力于为客户提供专业的技术支持和服务。

2025-05-09

2024年AI代码平台及产品发展简报总结

本文由甲子光年智库出品,探讨了2024年AI代码平台及产品的发展现状与未来展望。文章指出,随着大模型技术的进步,AI代码平台迎来了快速发展,显著提升了代码生成、重构、补全等开发效率,并优化了代码质量。AI代码平台不仅在代码编写阶段发挥作用,还在需求分析、集成测试、发布部署等多个环节实现智能化升级。大模型技术如RAG的应用,解决了传统生成模型的局限性,提高了代码生成的准确性和效率。此外,文章介绍了国内外多家AI代码平台厂商的产品特点和服务能力,如百度智能云的文心快码、众安保险的DevPilot、GitHub的Copilot等,展示了AI在代码开发领域的广泛应用前景。 适合人群:软件开发工程师、企业CTO、技术经理、AI爱好者等对AI代码开发感兴趣的人员。 使用场景及目标:①理解AI代码平台如何提升开发效率和代码质量;②学习如何在实际项目中应用AI代码工具;③探索AI代码平台在需求分析、集成测试、发布部署等环节的应用;④了解国内外主要AI代码平台的产品特点和服务能力。 阅读建议:本文详细介绍了AI代码平台的技术背景、应用场景和产品特点,建议读者结合自身开发需求,重点关注感兴趣的部分,如特定AI代码工具的功能和优势,并思考如何将其应用于实际工作中。

2025-05-09

【工业大模型】基于智能制造和工业4.0的大模型赋能:工业大模型行业发展分析与未来展望

本文详细介绍了工业大模型行业的发展现状、特征、竞争格局及政策环境。工业大模型依托智能制造和工业4.0,通过大模型训练与小模型优化,形成多形态智能产品,解决工业问题。行业发展面临数据质量、模型复杂度等挑战,且高度依赖资本与产业合作。市场由少数头部企业主导,如华为云、科大讯飞等,中小企业则通过细分市场提升专业性,避开价格战。政策方面,《生成式人工智能服务管理暂行办法》、《“十四五”智能制造发展规划》等文件为行业发展提供了法律框架和指导。未来,技术进步将深化大模型应用,但高成本也加速行业壁垒形成,市场增速或放缓。 适合人群:对工业大模型行业感兴趣的从业者、投资者及政策制定者。 使用场景及目标:①了解工业大模型行业的定义、分类和发展历程;②掌握行业特征、竞争格局及政策环境;③预测行业未来发展趋势,评估投资和政策支持的方向。 其他说明:本文基于头豹研究院的研究报告,内容涵盖工业大模型行业的各个方面,旨在为读者提供全面深入的理解。

2025-05-09

【AI大模型创业格局】国内大模型创业格局分析:从“6+2”格局到巨头竞争

本文详细分析了中国AI大模型行业的竞争格局和发展现状,涵盖了国内创业玩家、国内巨头玩家以及海外玩家的多维度比较。文章指出,自2022年11月ChatGPT发布以来,国内大模型数量一度超过300个,但经过一年多的竞争,目前仅有少数几家创业公司如智谱AI、MiniMax、阶跃星辰、百川智能、月之暗面、零一万物、面壁智能和DeepSeek脱颖而出,形成了“6+2”的创业格局。这些公司在模型能力、应用场景、融资进展和团队背景等方面各有特色,共同推动了AI技术的进步。与此同时,百度、阿里、腾讯、华为、科大讯飞、字节跳动和昆仑万维等国内巨头也在各自领域内积极布局大模型,形成了不同的竞争优势。文章还简要介绍了海外市场的竞争态势,并探讨了大模型创业公司面临的挑战与未来发展的关键因素。 适合人群:对AI大模型行业感兴趣的投资人、创业者、研究人员和技术爱好者。 使用场景及目标:①了解国内外AI大模型行业的最新动态和发展趋势;②评估各主要玩家的技术实力、商业模式和市场潜力;③为投资决策、创业规划或技术研发提供参考依据。 其他说明:本文由量子位智库撰写,该智库隶属于量子位(QbitAI),是一家专注于人工智能及前沿科技领域的产业服务平台,旨在帮助决策者更早掌握创新风向。

2025-05-09

人形机器人产业发展研究报告(2024年)

报告由中國信息通信研究院泰尔系统实验室发布,详细探讨了人形机器人产业的发展现状、技术演进、产业布局、应用需求及市场预期。人形机器人凭借其类人的感知交互能力、肢体结构和运动方式,能在简单重复劳动和危险场景中替代人类,在复杂技能场景中辅助人类,并有望在商业和家庭场景中服务人类。报告指出,人形机器人产业处于发展初期,未来市场规模巨大,预计将成为继个人电脑、智能手机、新能源汽车后的又一万亿级市场。报告还分析了人形机器人的核心技术,包括“大脑”、“小脑”和“肢体”三大部分,并介绍了国内外代表性产品的发展情况。此外,报告探讨了人形机器人在生产制造、社会服务、特种作业等领域的应用场景及其对就业、隐私、操控等伦理问题的影响。 适合人群:对人形机器人产业感兴趣的科研人员、投资者、政策制定者及相关企业从业人员。 使用场景及目标:①了解人形机器人的技术发展趋势和市场潜力;②为企业制定战略规划提供参考;③为政策制定者提供产业发展建议;④为科研人员提供技术研发方向。 其他说明:报告强调了人形机器人在不同应用场景中的共性需求和差异化需求,指出了产业发展面临的挑战,如技术基础、制造成本、算力需求和场景验证等。同时,报告呼吁加强政策引导和规范预研,以应对人形机器人带来的安全伦理问题。

2025-05-09

【软考学习资源】希赛网电脑端与APP端学习包操作流程:视频观看、刷题及电子资料查看指南

本文档详细介绍了软考学习包在电脑端和APP端的操作流程。电脑端包括登录希赛网、观看视频、刷题、查看电子资料四个主要步骤;APP端涵盖登录希赛网APP、观看视频(支持下载)、刷题、查看电子资料四个主要步骤。无论是电脑端还是APP端,在刷题方面都提供四种模块:每日一练、历年真题、章节练习和知识点练习,以及两种答题模式:考试模式和练习模式。同时,还提供了错题库、试题收藏等功能,方便学员复习和巩固知识。对于电子资料,部分可以下载,如思维导图,而知识点集锦和试题分类精解只能在线阅读。 适合人群:准备参加软考的学员,尤其是希望通过系统化平台进行备考的人群。 使用场景及目标:①为学员提供从登录平台到获取学习资源的一站式指南;②帮助学员高效利用平台资源,如视频课程、刷题模块、电子资料等进行软考备考。 其他说明:学员在操作过程中如有疑问,可联系课程顾问或拨打客服电话13212618783咨询,确保学习顺利进行。

2025-05-09

WebdingsFonts服务器字体问题

WebdingsFonts服务器字体问题

2025-05-12

2024AI年度网页流量报告

2024AI年度网页流量报告

2025-05-09

2024AIwatch 郎瀚威

《2024AIwatch 郎瀚威.pdf》是一份详尽的2024年度AI网页数据报告,由郎瀚威撰写并发布于AIwatch.ai平台。报告基于SimilarWeb的数据,涵盖了AI Chatbots、AI搜索、AI浏览器、虚拟角色、编程助手、图生视频、文字转音频、拍照搜题等多个垂直赛道,以及出海、字节、YC等观察角度。报告不仅分析了各赛道的流量趋势和市场格局,还对未来12个月进行了预测,指出AI编程、通用AIchatbot、浏览器插件、AI搜索等领域的发展趋势。此外,报告特别关注了中国市场的表现,强调了出海产品在SEO技术和流量获取方面的进展。报告还涉及了Agent低代码构建平台、会议总结、通用写作、社交增长、YC孵化项目、AIGrant资助项目和ProductHunt等领域的详细数据分析。 适合人群:对AI行业感兴趣的投资者、创业者、产品经理、市场营销人员及技术从业者。 使用场景及目标:①帮助读者了解AI各细分领域的最新流量趋势和市场竞争态势;②为创业者和投资者提供决策依据,识别潜在的投资机会和发展方向;③为企业制定出海策略、优化产品设计和提升用户体验提供参考。 其他说明:报告主要以提供客观数据为主,部分内容由AI辅助生成。由于数据来源的局限性,中国网页数据可能存在偏差,且未涵盖APP数据。报告适合检索阅读,读者可以根据自身需求重点关注不同章节。报告作者郎瀚威提供了多种联系方式,便于读者获取更多信息和商务合作。

2025-05-09

2024年年轻人的解压报告

关注年轻人的情绪后做出的调查研究

2025-05-09

2024年度AI十大趋势报告

本文系统地分析了2024年AI技术的十大趋势,涵盖大模型创新、Scaling Law泛化、AGI探索、AI应用格局、AI应用竞争、AI产品趋势、AI行业渗透率及AI创投等方面。文章首先介绍了AI技术的前沿进展,如大模型架构的创新(RWKV、Mamba、UniRepLKNet、RetNet、LFM)和Scaling Law的新理解,强调了AI在推理能力上的提升。接着探讨了AGI探索的多个方向,包括视频生成、世界模型、具身智能和空间智能。随后,文章详细分析了AI在不同应用场景中的现状和发展,如办公提效、创意生成、休闲娱乐和日常生活。最后,文章深入研究了AI在智能驾驶、具身智能、智能硬件、游戏、影视、营销、教育和医疗等行业的落地情况,并指出AI技术的广泛应用将带来巨大的市场潜力。 适合人群:对AI技术发展趋势感兴趣的科技从业者、投资者、研究人员及政策制定者。 使用场景及目标:①了解AI技术的最新进展和未来发展方向;②评估AI技术在各行业的应用潜力和市场机会;③为AI相关产品的开发、投资和政策制定提供参考依据。 其他说明:文章不仅总结了当前AI技术的主要趋势,还通过具体案例展示了AI在不同领域的应用效果。同时,文章指出AI技术的广泛应用将推动各行业的变革,但同时也面临着技术、数据和政策等方面的挑战。未来,随着技术的进一步成熟,AI将更加深入地融入各行各业,创造出更大的价值。

2025-05-09

教育科技AI教育硬件市场全景分析:2024年消费级产品发展趋势与市场规模预测

本文为《AI教育硬件全景报告2024》,由量子位智库发布,详细分析了AI教育硬件的市场现状、技术原理、产品分类及其未来发展趋势。报告指出,AI教育硬件通过大模型技术实现了个性化、互动性和智能化的大幅提升,主要分为消费级和机构级两类,其中消费级产品占据更大市场份额,涵盖AI学习机、AI词典笔、AI听力宝等主流品类,以及智能学习灯、教育机器人等新兴品类。报告还总结了AI教育硬件的热卖要素,包括搭载教育垂直大模型、支持个性化教学、覆盖基础AI功能并具备创新亮点、内置海量学习资源和定价合理。通过对市场玩家的竞争优势分析,报告预测了未来AI教育硬件市场规模的增长趋势及各梯队企业的变化。 适合人群:对教育硬件市场感兴趣的投资者、教育科技从业者、教育机构管理者及对AI教育硬件产品有购买意向的家长和学生。 使用场景及目标:①了解AI教育硬件的技术原理和发展趋势;②评估市场上各类AI教育硬件产品的优劣,选择合适的产品;③研究不同厂商的竞争优势,把握市场动态。 阅读建议:本报告内容详实,涵盖了AI教育硬件的多个方面,建议读者重点关注市场现状、产品分类和技术原理部分,以便更好地理解AI教育硬件的未来发展潜力。同时,结合实际需求,参考热卖要素和企业竞争力分析,做出明智的选择。

2025-05-09

模板文档:实施技术文档模板

实施技术文档模板 需求调研 需求规格说明书 详细设计说明书 数据库设计说明书 系统配置和安装部署手册 测试方案 测试记录及报告 操作手册

2025-05-09

法律科技基于AI的法律工具创新:推动普惠法律服务与合规管理的发展

内容概要:本文详细探讨了法律科技(LegalTech)领域的人工智能(AI)创新,重点介绍了AI在法律行业的应用现状和发展趋势。文章涵盖了法律AI工具的创新地图,包括合同管理、法律文件处理、法律助理、法律研究等方面的应用。特别提到了一些代表性公司如Harvey、Casetext、DoNotPay等的发展情况和融资动态。此外,文章还探讨了法律AI面临的挑战,如准确性要求高、低端市场缺乏等问题,以及法律科技如何通过AI提高效率、降低成本,并逐步改变传统法律服务模式。最后,文章介绍了中国政法大学与创新天使团合作的Law360法律AI创新社区,旨在推动法律科技的普及和发展。 适合人群:对法律科技感兴趣的法律从业者、创业者、投资者及研究人员。 使用场景及目标:①了解法律AI工具的最新进展和应用场景;②探索AI在法律行业中的创新潜力和商业机会;③学习如何利用AI提高法律服务的效率和质量;④关注法律AI的挑战和解决方案,为未来的发展做好准备。 其他说明:本文不仅提供了详细的市场分析和产品介绍,还强调了AI技术在法律行业的应用前景和社会价值。通过案例分析和数据支持,文章为读者描绘了一个全面的法律AI生态系统,有助于激发更多的创新和合作。

2025-05-03

AIGC赋能各行实务.pdf

1.AI正在影响世界 2.我们该怎么办 3.AI高级实务 AI改变行业的案例:AI对公司的影响从大公司到小公司,人类首次因为AI的罢工,AI引发的一人即团队等

2025-05-03

【人工智能工具】DeepSeek多功能应用场景解析:涵盖日常生活、职场工作、教育及投资领域的问题解决与优化

DeepSeek是什么,如何注册和使用 学会7类提示词,让DeepSeek效率翻倍 日常生活中,可以用DeepSeek解决那些问题 家庭教育,可以用DeepSeek解决那些问题 职场工作,可以用DeepSeek解决那些问题 老板创业者,可以用DeepSeek解决那些问题 自媒体人,可以用DeepSeek解决那些问题 如何把DeepSeek变成你的私人投顾 DeepSeek加其他工具的方法

2025-05-03

OpenAI o1 系统卡:高级语言模型的安全性与性能评估

本文档详细介绍了OpenAI的o1系列大型语言模型的安全性和性能评估。o1模型通过大规模强化学习训练,具备强大的推理能力,尤其在上下文推理方面表现出色,能够显著改善模型的安全性。文档重点描述了o1-preview和o1-mini模型的安全评估过程,包括禁止内容评估、越狱评估、幻觉评估、公平性与偏见评估、思维链安全性评估等。评估结果显示,o1模型在安全性方面优于GPT-4o模型,但在某些方面仍存在风险,如幻觉和欺骗行为。此外,文档还探讨了模型在多语言性能、生物风险、网络安全、说服力等方面的评估结果,并通过外部红队评估和准备框架评估,确保模型的安全性和可靠性。 适用人群:对人工智能模型安全性和性能评估感兴趣的科研人员、工程师、政策制定者及相关领域的从业者。 使用场景及目标:①评估大型语言模型的安全性和性能,确保其在实际应用中的可靠性和可控性;②为模型开发者和用户提供关于模型潜在风险和改进方向的指导;③支持政策制定者制定相关政策和法规,保障人工智能技术的安全应用。 其他说明:文档强调了o1模型在推理能力和安全性方面的显著提升,但也指出了存在的潜在风险,如幻觉和欺骗行为。为了确保模型的安全性和可靠性,OpenAI进行了全面的内部和外部评估,并采取了相应的安全措施和风险缓解措施。迭代的现实世界部署被认为是将所有受影响的人带入AI安全对话的最有效方式。

2025-05-03

算法系统集成说明:RESTful HTTP/HTTPS接口标准与数据交互规范

内容概要:本文档《算法系统集成说明_20221202.pdf》主要介绍了算法系统的统一接入标准及其相关接口规范。文档分为整体流程、算法服务接口两大部分,并提供了详细的附录说明。整体流程涵盖了从算法服务到智能解析平台的数据交互过程,确保各环节顺畅对接。算法服务接口部分明确了接口的基本要求和服务的具体操作方法,包括分析结果上报和算法信息查询两大功能模块。附录部分则进一步细化了目标接收地址、算法输入输出规则、目标参数描述、属性参数描述以及任务输出数据格式等内容,同时提供了必要的数据字典和错误码解释,帮助开发者更好地理解和使用这些接口。 适合人群:适用于具有一定的算法开发经验和技术背景的研发人员,尤其是负责算法系统集成和维护的技术团队成员。 使用场景及目标:① 开发者可以通过本指南快速掌握算法服务的标准接口规范,确保不同算法服务之间的兼容性和互操作性;② 提供详细的接口说明和示例,帮助开发者正确实现分析结果上报和算法信息查询等功能;③ 利用附录提供的详细规则和数据字典,优化算法服务的输入输出配置,提高系统的稳定性和效率。 阅读建议:由于文档内容较为专业且涉及大量技术细节,建议读者首先通读整体流程和接口要求,建立全局概念;然后深入研究具体的接口说明和附录内容,结合实际项目需求进行针对性的学习和实践。对于关键技术和复杂配置,建议反复查阅并进行充分测试,确保理解和应用的准确性。

2025-05-03

AI 科技对 PC 产业的影响.pptx

AI PC(人工智能个人电脑)是指能够在本地执行生成式 AI 功能的电脑,而不仅仅是通过网络运行 AI 聊天或生成式应用。随着技术的发展,AI 功能正逐渐从云端转移到 PC 本地运行,这一趋势正在重塑 PC 产业。 1.AI PC 产品开发趋势 2.市场与用户需求变化 3.人机交互方式的变革 4.Walmart 收购 VIZIO 的案例分析 5.AI 技术对键盘与鼠标需求的影响 Walmart 收购 VIZIO 的案例展示了市场整合和数据隐私的重要性,同时也预示了未来人机交互方式的变革。 随着 AI 技术的不断发展,折叠 PC 设备的需求将显著提升,为用户带来更加便捷和自然的交互体验。

2025-05-02

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除