Simpson(辛普森)积分公式

文章详细介绍了微积分中的牛顿-莱布尼茨公式,并重点讨论了辛普森积分公式,通过二次曲线逼近提高积分精度。文章还提到如何通过二分法和递归设计Simpson自适应算法来控制计算精度,但未深入数学误差分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、牛顿 - 莱布尼茨公式(微积分的基本公式):
∫ a b f ( x ) d x = F ( b ) − F ( a ) \int_{a}^{b}f\left(x\right)dx=F(b)-F(a) abf(x)dx=F(b)F(a)
  其中,函数F(x) 是连续函数f(x)在区间[a,b]上的原函数。
二、辛普森(Simpson)积分公式
  1.Simpson积分公式是将区间端点和区间中点三个点近似看成抛物线上对应的三个点,以二次曲线逼近的方式取代矩形或梯形积分公式,以求得定积分的数值近似解。
∫ a b f ( x ) d x ≈    ( b − a ) 6 ∙ [ f ( a ) + 4 f ( a + b 2 ) + f ( b ) ] \int_{a}^{b}f\left(x\right)dx\approx\ \ \frac{(b-a)}{6}\bullet\left[f\left(a\right)+4f\left(\frac{a+b}{2}\right)+f(b)\right] abf(x)dx  6(ba)[f(a)+4f(2a+b)+f(b)]
  2.Simpson积分公式可以利用微积分基本公式推导出来,推导过程如下:
设置一个一元二次函数
f ( x ) = a x 2 + b x + c f(x)=ax^2+bx+c f(x)=ax2+bx+c
  求积分为
F ( x ) = ∫ 0 x f ( x ) =   a 3 x 3 + b 2 x 2 + c x + d F\left(x\right)=\int_{0}^{x}{f(x)}=\ \frac{a}{3}x^3+\frac{b}{2}x^2+cx+d F(x)=0xf(x)= 3ax3+2bx2+cx+d
  那么
∫ L R f ( x )   d x =   F ( R ) − F ( L ) = a 3 ( R 3 − L 3 ) + b 2 ( R 2 − L 2 ) + c ( R − L ) = a 3 ( R 3 −   L 3 ) + b 2 ( R 2 − L 2 ) + c ( R − L ) =   ( R − L ) [ a 3 ( R 2 +   L 2 + L R ) + b 2 ( R + L ) + c ] = ( R − L ) 6 ( 2 a R 2 + 2 a L 2 + 2 a R L + 3 b R + 3 b L + 6 c ) = ( R − L ) 6 { ( a L 2 + b L + c ) + ( a R 2 + b R + c ) + 4 [ a ( L + R 2 ) 2 + b ( L + R 2 ) + c ] } = ( R − L ) 6 [ f ( L ) + 4 f ( L + R 2 ) + f ( R ) ] \begin{align} \int_{L}^{R}{f\left(x\right)\ }dx \nonumber &=\ F\left(R\right)-F\left(L\right)\\ \nonumber &=\frac{a}{3}{(R}^3-L^3)+\frac{b}{2}{(R}^2-L^2)+c(R-L)\\ \nonumber &=\frac{a}{3}{(R}^3-\ L^3)+\frac{b}{2}{(R}^2-L^2)+c(R-L)\\ \nonumber &=\ (R-L)\left[\frac{a}{3}{(R}^2+\ L^2+LR)+\frac{b}{2}(R+L)+c\right]\\ \nonumber &=\frac{\left(R-L\right)}{6}(2aR^2+2aL^2+2aRL+3bR+3bL+6c)\\ \nonumber &=\frac{\left(R-L\right)}{6}\left\{\left(aL^2+bL+c\right)+\left(aR^2+bR+c\right)+4\left[a\left(\frac{L+R} {2}\right)^2+b\left(\frac{L+R}{2}\right)+c\right]\right\}\\ \nonumber &=\frac{\left(R-L\right)}{6}[f(L)+4f(\frac{L+R}{2})+f(R)]\\ \nonumber \end{align} LRf(x) dx= F(R)F(L)=3a(R3L3)+2b(R2L2)+c(RL)=3a(R3 L3)+2b(R2L2)+c(RL)= (RL)[3a(R2+ L2+LR)+2b(R+L)+c]=6(RL)(2aR2+2aL2+2aRL+3bR+3bL+6c)=6(RL){(aL2+bL+c)+(aR2+bR+c)+4[a(2L+R)2+b(2L+R)+c]}=6(RL)[f(L)+4f(2L+R)+f(R)]
  有了 Simpson积分公式,一个自然的想法是把积分区间拆成多个小区间后求和,但是分成区间的个数和长度因积分区间和精度要求甚至被积函数而异。
本文不在从数学角度进行误差分析,不是本文的重点。而从计算机运算的角度,精度的控制可以通过设定一个能够容忍的误差作为最终的返回情况,基于二分设计出递归的计算流程,即所说的Simpson自适应算法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值