正则表达式和re模块:
什么是正则表达式:
通俗理解:按照一定的规则,从某个字符串中匹配出想要的数据。这个规则就是正则表达式。标准答案:https://baike.baidu.com/item/正则表达式/1700215?fr=aladdin
正则表达式常用匹配规则:
匹配某个字符串:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import re
# 1. 匹配某个字符串
text = "hello"
ret = re.match('he',text)
print(ret.group())
# 2. 点:匹配任意的字符(不能匹配'\n')
text = "ahello"
ret = re.match('.',text)
print(ret.group())
# 3. \d:匹配任意的数字(0-9)
text = "1"
ret = re.match('\d',text)
print(ret.group())
# 4. \D:匹配任意的非数字
text = "+"
ret = re.match('\D',text)
print(ret.group())
# 5. \s:匹配空白字符(\n, \t, \r, 空格)
text = "\t"
ret = re.match('\s',text)
print(ret.group())
# 6. \w:匹配的是a-z,A-Z,数字和下划线
text = "a"
ret = re.match('\w',text)
print(ret.group())
# 7. \W:与\w相反
text = "+"
ret = re.match('\W',text)
print(ret.group())
# 8. []组合的方式:只要满足中括号中的字符,就可以匹配
text = "0731-88888888adas"
ret = re.match('[\d\-]+',text)
print(ret.group())
# 8.1. 中括号的形式代替\d
text = "09"
ret = re.match('[0-9]',text)
print(ret.group())
# 8.2. 中括号的形式代替\D
text = "a"
ret = re.match('[^0-9]',text)
print(ret.group())
# 8.3. 中括号的形式代替\w
text = "_"
ret = re.match('[a-zA-z0-9_]',text)
print(ret.group())
# 8.4 中括号的形式代替\W
text = "+"
ret = re.match('[^a-zA-z0-9_]',text)
print(ret.group())
匹配多个字符
# 9. *:可以匹配0或者任意多个字符
text = "abcd"
ret = re.match('\w*',text)
print(ret.group())
# 10. +:匹配1个或者多个字符
text = "abcd"
ret = re.match('\w+',text)
print(ret.group())
# 11. ?:要么没有,要么就只有一个
text = "abcd"
ret = re.match('\w?',text)
print(ret.group())
# 12. {m}:匹配m个字符
text = "abcd"
ret = re.match('\w{2}',text)
print(ret.group())
# 13. {m,n}:匹配m-n个字符
text = "abcdef"
ret = re.match('\w{2,4}',text)
print(ret.group())
######### 小案例 #########
# 14. 验证手机号码:
text = "13578900987"
ret = re.match('1[345678]\d{9}',text)
print(ret.group())
# 15. 验证邮箱:
text = 'hynever12_@163.com'
ret = re.match('\w+@[a-z0-9]+\.[a-z]+',text)
print(ret.group())
# 16. 验证URL:
text = "https://baike.baidu.com/item/Python/407313?fr=aladdin"
ret = re.match('(http|https|ftp)://[^\s]+',text)
print(ret.group())
# 17. 验证身份证:
text = "11120304053442324x"
ret = re.match('\d{17}[\dxX]',text)
print(ret.group())
# 18. ^(脱字符)(如果在中括号中,代表取反)
text = "hello"
ret = re.search('^h',text)
print(ret.group())
# 19. $:表示以...结尾:
text = "xxx@163.com"
ret = re.match('\w+@163.com$',text)
print(ret.group())
# 20. |:匹配多个字符串或者表达式:
text = "httpsdfdas"
ret = re.match('(ftp|http|https)',text)
print(ret.group())
# 21. 贪婪模式与非贪婪模式:
text = "0123456"
ret = re.match('\d+',text) # 贪婪模式
ret = re.match('\d+?',text) # 非贪婪模式
print(ret.group())
text = "<h1>标题</h1>"
ret = re.match('<.+?>',text)
print(ret.group())
# 22. 匹配0-100之间的数字
# 可以出现的:1,2,3,10
# 有三种情况:1,99,100
# 不可以出现的:09,101
text = "100"
ret = re.match('[1-9]\d?$|100$',text)
print(ret.group())
转义字符和原生字符串:
转义字符:
在正则表达式中,有些字符是有特殊意义的字符。因此如果想要匹配这些字符,那么就必须使用反斜杠进行转义。比如$代表的是以...结尾,如果想要匹配$,那么就必须使用$。示例代码如下:
text = "apple price is $299"
ret = re.search("\$\d+",text)
print(ret.group())
原生字符串:
在正则表达式中,\是专门用来做转义的。在Python中\也是用来做转义的。因此如果想要在普通的字符串中匹配出,那么要给出四个。示例代码如下:
text = "apple \c"
ret = re.search('\\\\c',text)
print(ret.group())
因此要使用原生字符串就可以解决这个问题:
text = "apple \c"
ret = re.search(r'\\c',text)
print(ret.group())
re模块中常用函数:
# match:从开始的位置进行匹配。如果开始的位置没有匹配到。就直接失败了
text = 'hello'
ret = re.match('h',text)
print(ret.group())
# 如果第一个字母不是h,那么就会失败。
text = 'ahello'
ret = re.match('h',text)
print(ret.group())
# 如果想要匹配换行的数据,那么就要传入一个flag=re.DOTALL,就可以匹配换行符了。
text = "abc\nabc"
ret = re.match('abc.*abc',text,re.DOTALL)
print(ret.group()).
# search:在字符串中找满足条件的字符。如果找到,就返回。说白了,就是只会找到第一个满足条件的。
text = 'apple price $99 orange price $88'
ret = re.search('\d+',text)
print(ret.group())
# 分组:在正则表达式中,可以对过滤到的字符串进行分组。分组使用圆括号的方式。
# 1. group:和group(0)是等价的,返回的是整个满足条件的字符串。
# 2. groups:返回的是里面的子组。索引从1开始。
# 3. group(1):返回的是第一个子组,可以传入多个。
text = "apple price is $99,orange price is $10"
ret = re.search(r".*(\$\d+).*(\$\d+)",text)
print(ret.group())
print(ret.group(0))
print(ret.group(1))
print(ret.group(2))
print(ret.groups())
# findall:找出所有满足条件的,返回的是一个列表。
text = 'apple price $99 orange price $88'
ret = re.findall('\d+',text)
print(ret)
# sub:用来替换字符串。将匹配到的字符串替换为其他字符串。
text = 'apple price $99 orange price $88'
ret = re.sub('\d+','0',text)
print(ret)
# sub函数的案例,获取拉勾网中的数据:
html = """
<div>
<p>基本要求:</p>
<p>1、精通HTML5、CSS3、 JavaScript等Web前端开发技术,对html5页面适配充分了解,熟悉不同浏览器间的差异,熟练写出兼容各种浏览器的代码;</p>
<p>2、熟悉运用常见JS开发框架,如JQuery、vue、angular,能快速高效实现各种交互效果;</p>
<p>3、熟悉编写能够自动适应HTML5界面,能让网页格式自动适应各款各大小的手机;</p>
<p>4、利用HTML5相关技术开发移动平台、PC终端的前端页面,实现HTML5模板化;</p>
<p>5、熟悉手机端和PC端web实现的差异,有移动平台web前端开发经验,了解移动互联网产品和行业,有在Android,iOS等平台下HTML5+CSS+JavaScript(或移动JS框架)开发经验者优先考虑;6、良好的沟通能力和团队协作精神,对移动互联网行业有浓厚兴趣,有较强的研究能力和学习能力;</p>
<p>7、能够承担公司前端培训工作,对公司各业务线的前端(HTML5\CSS3)工作进行支撑和指导。</p>
<p><br></p>
<p>岗位职责:</p>
<p>1、利用html5及相关技术开发移动平台、微信、APP等前端页面,各类交互的实现;</p>
<p>2、持续的优化前端体验和页面响应速度,并保证兼容性和执行效率;</p>
<p>3、根据产品需求,分析并给出最优的页面前端结构解决方案;</p>
<p>4、协助后台及客户端开发人员完成功能开发和调试;</p>
<p>5、移动端主流浏览器的适配、移动端界面自适应研发。</p>
</div>
"""
ret = re.sub('</?[a-zA-Z0-9]+>',"",html)
print(ret)
# split:使用正则表达式来分割字符串。
text = "hello world ni hao"
ret = re.split('\W',text)
print(ret)
>> ["hello","world","ni","hao"]
# compile:对于一些经常要用到的正则表达式,可以使用compile进行编译,后期再使用的时候可以直接拿过来用,执行效率会更快。而且compile还可以指定flag=re.VERBOSE,在写正则表达式的时候可以做好注释。
text = "the number is 20.50"
r = re.compile(r"""
\d+ # 小数点前面的数字
\.? # 小数点
\d* # 小数点后面的数字
""",re.VERBOSE)
ret = re.search(r,text)
print(ret.group())