深度学习
文章平均质量分 95
三木ぃ
自己的学习笔记
展开
-
You Only Learn One Representation: Unified Network for Multiple Tasks
本论文,作者提出了一个联合的网络一起编码隐式知识和显示知识,模仿人的潜意识学习。这个统一的网络可以生成一个统一的表示,同时服务于多个任务。可以在卷积神经网络中进行核空间对齐、预测细化和多任务学习。实验表明,隐式知识引入神经网络会提升所有任务的表现。原创 2021-05-19 15:31:56 · 1430 阅读 · 1 评论 -
RepVGG: Making VGG-style ConvNets Great Again
提出了一个推理时类似VGG的只包含3X3卷积核Relu层但是训练时却是多分枝的RepVGG。它通过在参数化技术解耦了训练和推理,让模型拥有快速推理的同时也拥有高精度的表现。原创 2021-03-08 16:18:21 · 870 阅读 · 0 评论 -
暴力涨点:Inception Convolution with Efficient Dilation Search
膨胀卷积作为标准卷积的变体,能够有效控制接受域以及在不引入额外计算量的基础上处理目标大规模变化问题,但是最近的文章很少讨论它。为了充分探索它的潜能,作者提出了一个膨胀卷积的变体:inception卷积,在不同轴线(axes/dim)、通道和层上会产生独立的膨胀卷积。并且提出了相应的膨胀搜索算法(EDO)来辅助inception卷积适应数据。实验证明,该方法用于拓展其余benchmark后获得了一致的提升。原创 2021-03-07 21:07:37 · 1292 阅读 · 0 评论 -
多任务损失优化:Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics
证明了对损失项的正确加权对于多任务学习问题是至关重要的,同时证明了同方差(任务)不确定性是损失赋权的有效方法。原创 2020-12-06 20:29:37 · 8448 阅读 · 19 评论 -
卷积神经网络的通用性拓展
卷积神经网络的通用性拓展原创 2020-11-03 21:29:58 · 440 阅读 · 1 评论