项目场景:
解决pytorch自定义dataloader中num_workers>0时训练loss出异常状况
问题描述
在复现yolov8时,自定义dataset和dataloader,在设置num_workers时,为0能正常训练,为其他值时loss为nan
class mosaic4:
def __init__(self, dataset, p=0):
self.dataset = dataset
self.p = p
def __call__(self, data):
h, w = data['img'].shape[-2:]
if random.random() < self.p:
merge_boxes = []
index = [random.randint(0, len(self.dataset) - 1) for _ in range(3)]
mosaic = [self.dataset.load_img_and_label(item) for item in index]
...
merge_boxes = torch.cat(merge_boxes,dim=0)
boxes, cls = merge_boxes.split([4, 1] ,dim=-1)
data = {'cls': cls, 'boxes': xyxy2xywh(boxes), 'img': new_img}
return data
原因分析:
我的dataset中有mosaic图像增强,分析可能由于num_works优化了这一段代码使得图像读取出现错误
解决方案:
对mosaic这一段代码进行上锁处理 加入:
if random.random() < self.p:
lock = threading.Lock()
with lock:
class mosaic4:
def __init__(self, dataset, p=0):
self.dataset = dataset
self.p = p
def __call__(self, data):
h, w = data['img'].shape[-2:]
if random.random() < self.p:
lock = threading.Lock()
with lock:
merge_boxes = []
index = [random.randint(0, len(self.dataset) - 1) for _ in range(3)]
mosaic = [self.dataset.load_img_and_label(item) for item in index]
...
merge_boxes = torch.cat(merge_boxes,dim=0)
boxes, cls = merge_boxes.split([4, 1] ,dim=-1)
data = {'cls': cls, 'boxes': xyxy2xywh(boxes), 'img': new_img}
return data
PyTorch中自定义Dataloader的num_workers问题:解决训练loss为nan的异常现象
在使用PyTorch实现Yolov8时,自定义dataset和dataloader遇到num_workers>0时loss为nan的问题,原因是多线程环境下mosaic图像增强可能导致读取错误。通过添加线程锁解决了这一问题。
6120

被折叠的 条评论
为什么被折叠?



