dataloader中的num_workers报错问题

PyTorch中自定义Dataloader的num_workers问题:解决训练loss为nan的异常现象
在使用PyTorch实现Yolov8时,自定义dataset和dataloader遇到num_workers>0时loss为nan的问题,原因是多线程环境下mosaic图像增强可能导致读取错误。通过添加线程锁解决了这一问题。

项目场景:

解决pytorch自定义dataloader中num_workers>0时训练loss出异常状况


问题描述

在复现yolov8时,自定义dataset和dataloader,在设置num_workers时,为0能正常训练,为其他值时loss为nan

class mosaic4:
    def __init__(self, dataset, p=0):
        self.dataset = dataset
        self.p = p

    def __call__(self, data):
        h, w = data['img'].shape[-2:]
        if random.random() < self.p:
                merge_boxes = []
                index = [random.randint(0, len(self.dataset) - 1) for _ in range(3)]
                mosaic = [self.dataset.load_img_and_label(item) for item in index]
              
               ...

           
            merge_boxes = torch.cat(merge_boxes,dim=0)
            boxes, cls = merge_boxes.split([4, 1] ,dim=-1)
            data = {'cls': cls, 'boxes': xyxy2xywh(boxes), 'img': new_img}

        return data

原因分析:

我的dataset中有mosaic图像增强,分析可能由于num_works优化了这一段代码使得图像读取出现错误


解决方案:

对mosaic这一段代码进行上锁处理 加入:
if random.random() < self.p:
lock = threading.Lock()
with lock:

class mosaic4:
    def __init__(self, dataset, p=0):
        self.dataset = dataset
        self.p = p

    def __call__(self, data):
        h, w = data['img'].shape[-2:]
        if random.random() < self.p:
            lock = threading.Lock()
            with lock:
                merge_boxes = []
                index = [random.randint(0, len(self.dataset) - 1) for _ in range(3)]
                mosaic = [self.dataset.load_img_and_label(item) for item in index]
              
               ...

           
            merge_boxes = torch.cat(merge_boxes,dim=0)
            boxes, cls = merge_boxes.split([4, 1] ,dim=-1)
            data = {'cls': cls, 'boxes': xyxy2xywh(boxes), 'img': new_img}

        return data
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值