总结conda或者pip常见命令
转载地址:https://blog.csdn.net/weixin_43312117/article/details/123431626?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522166761460616782395396325%2522%252C%2522scm%2522%253A%252220140713.130102334..%2522%257D&request_id=166761460616782395396325&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~top_click~default-1-123431626-null-null.142^v63^js_top,201^v3^add_ask,213^v1^t3_esquery_v3&utm_term=anaconda%E5%91%BD%E4%BB%A4%E8%A1%8C&spm=1018.2226.3001.4187
个人建议学习python最好使用anaconda+pycharm,自己从2020大四初学python以来,到慢慢熟悉conda/pip命令,基本的会用,平时也会把常见的记在记事本中,但是往往总结得不是很全,一般用什么都会baidu。因此,此时用博客将我平日使用到的基础命令记录下来。
助力大家熟练使用anaconda命令行
本文包含
- 下载链接
- 使用常见的conda/pip命令
- anaconda创建虚拟环境
- 添加/切换镜像源加速
- 安装opencv
- 安装pytorch
- 一键安装环境配置requirements.txt
下载
官方下载:https://www.anaconda.com/products/distribution
官网历史版本:https://repo.anaconda.com/archive/
离线安装:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/
注意
——下载安装的时候有个path选项记得全部勾选(自动配置环境变量)
Anaconda创建虚拟环境
创建虚拟环境:yida_cv是我虚拟环境的名字,你取什么名字都OK,最好能够标记好环境。
conda create -n yida_cv python=3.6
- 1
激活/切换虚拟环境
conda activate yida_cv
- 1
退出并进入base环境
# 方法一
conda deactivate
# 方法二
conda activate base
- 1
- 2
- 3
- 4
查看已有的虚拟环境
conda env list
- 1
删除虚拟环境
conda remove -n yida_cv --all
- 1
修改镜像源
参考Anaconda镜像源相关命令
[由于网络限制使用默认镜像源下载包速度有限,所以最好先切换到清华源]
1.查看当前使用的源
conda config --show-sources
- 1
2.切换清华镜像源
如何使用
第一步:先把下面的全部内容复制到txt中去
第二步:全部复制到命令行
第三步:回车
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
conda config --set show_channel_urls yes
- 1
- 2
- 3
- 4
- 5
- 6
- 7
3.还原为默认镜像
conda config --remove-key channels
- 1
4.指定源使用
pip install numpy -i https://pypi.tuna.tsinghua.edu.cn/simple
- 1
源
我最常用的是豆瓣源,能很轻松记得住。
-i http://pypi.douban.com/simple # 豆瓣
-i https://pypi.tuna.tsinghua.edu.cn/simple # 清华
-i http://mirrors.aliyun.com/pypi/simple # 阿里
# 安装numpy使用豆瓣源加速
pip install numpy -i http://pypi.douban.com/simple
- 1
- 2
- 3
- 4
- 5
记忆小技巧:【 -i 、 py pi、 豆瓣官网、simple】
查看已安装的包
已有的包
conda list
- 1
查看指定包
conda list numpy
- 1
pip安装/卸载包
安装包:numpy就是包的名字,输入你需要安装的包名
pip install numpy
- 1
安装指定版本的包
pip install numpy==1.19.5
- 1
安装包时指定镜像源(豆瓣)加速
pip install numpy -i https://pypi.douban.com/simple
- 1
卸载包
pip uninstall numpy
- 1
更新包
pip install --upgrade numpy
- 1
常见包的安装
安装OpenCv
Win10安装
pip install opencv-python
pip install opencv-contrib-python
- 1
- 2
Mac安装
pip3 install opencv-python --user
- 1
安装tensorflow
conda install tensorflow-gpu==2.0.0
- 1
安装Pytorch
cpu
版本
conda install pytorch torchvision cpuonly -c pytorch
- 1
安装pytorch-gpu
版本:pytorch gpu安装教程(Perfect完美系列)
pytorch官方版本查看
:https://pytorch.org/get-started/previous-versions/
离线下载网址
:https://download.pytorch.org/whl/torch_stable.html
# 方法1:需要网络稳定, 直接从官网下载 官网有直接的下载命令
# conda
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 -c pytorch
# 方法2:安装whl离线torch包
pip install pytorch.whl
# 方法3:具体操作看上面的gpu安装教程
- 1
- 2
- 3
- 4
- 5
- 6
一键安装环境配置requirements.txt
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple -r requirements.txt
- 1
其它命令
启动jupyter
jupyter notebook
- 1