Anaconda命令行总结

总结conda或者pip常见命令

转载地址:https://blog.csdn.net/weixin_43312117/article/details/123431626?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522166761460616782395396325%2522%252C%2522scm%2522%253A%252220140713.130102334..%2522%257D&request_id=166761460616782395396325&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~top_click~default-1-123431626-null-null.142^v63^js_top,201^v3^add_ask,213^v1^t3_esquery_v3&utm_term=anaconda%E5%91%BD%E4%BB%A4%E8%A1%8C&spm=1018.2226.3001.4187

个人建议学习python最好使用anaconda+pycharm,自己从2020大四初学python以来,到慢慢熟悉conda/pip命令,基本的会用,平时也会把常见的记在记事本中,但是往往总结得不是很全,一般用什么都会baidu。因此,此时用博客将我平日使用到的基础命令记录下来。

助力大家熟练使用anaconda命令行

本文包含

  • 下载链接
  • 使用常见的conda/pip命令
  • anaconda创建虚拟环境
  • 添加/切换镜像源加速
  • 安装opencv
  • 安装pytorch
  • 一键安装环境配置requirements.txt

下载

官方下载:https://www.anaconda.com/products/distribution

官网历史版本:https://repo.anaconda.com/archive/

离线安装:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/

注意——下载安装的时候有个path选项记得全部勾选(自动配置环境变量)
在这里插入图片描述


Anaconda创建虚拟环境

创建虚拟环境:yida_cv是我虚拟环境的名字,你取什么名字都OK,最好能够标记好环境。
conda create -n yida_cv python=3.6 

   
   
  • 1
激活/切换虚拟环境
conda activate yida_cv

   
   
  • 1
退出并进入base环境
# 方法一
 conda deactivate 
 # 方法二
 conda activate base

   
   
  • 1
  • 2
  • 3
  • 4
查看已有的虚拟环境
conda env list

   
   
  • 1
删除虚拟环境
conda remove -n yida_cv --all

   
   
  • 1

修改镜像源参考Anaconda镜像源相关命令

[由于网络限制使用默认镜像源下载包速度有限,所以最好先切换到清华源]
1.查看当前使用的源
conda config --show-sources 

   
   
  • 1
2.切换清华镜像源

如何使用
第一步:先把下面的全部内容复制到txt中去
第二步:全部复制到命令行
第三步:回车

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge 
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/

conda config --set show_channel_urls yes

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
3.还原为默认镜像
conda config --remove-key channels

 
 
  • 1
4.指定源使用
pip install numpy -i https://pypi.tuna.tsinghua.edu.cn/simple 

 
 
  • 1

我最常用的是豆瓣源,能很轻松记得住。

    -i  http://pypi.douban.com/simple 				# 豆瓣
	-i https://pypi.tuna.tsinghua.edu.cn/simple		# 清华
    -i  http://mirrors.aliyun.com/pypi/simple		# 阿里
    # 安装numpy使用豆瓣源加速
    pip install numpy -i  http://pypi.douban.com/simple

 
 
  • 1
  • 2
  • 3
  • 4
  • 5

记忆小技巧:【 -i 、 py pi、 豆瓣官网、simple】


查看已安装的包

已有的包
conda list

 
 
  • 1
查看指定包
conda list numpy

 
 
  • 1

pip安装/卸载包

安装包:numpy就是包的名字,输入你需要安装的包名
pip install numpy

 
 
  • 1
安装指定版本的包
pip install numpy==1.19.5

 
 
  • 1
安装包时指定镜像源(豆瓣)加速
pip install numpy -i https://pypi.douban.com/simple

 
 
  • 1
卸载包
pip uninstall numpy

 
 
  • 1
更新包
pip install --upgrade numpy

 
 
  • 1

常见包的安装

安装OpenCv
Win10安装
pip install opencv-python
pip install opencv-contrib-python

 
 
  • 1
  • 2
Mac安装
 pip3 install opencv-python --user

 
 
  • 1

安装tensorflow

conda install tensorflow-gpu==2.0.0

 
 
  • 1

安装Pytorch

cpu版本
conda install pytorch torchvision cpuonly -c pytorch

 
 
  • 1
安装pytorch-gpu版本:pytorch gpu安装教程(Perfect完美系列)

pytorch官方版本查看https://pytorch.org/get-started/previous-versions/
离线下载网址https://download.pytorch.org/whl/torch_stable.html

# 方法1:需要网络稳定, 直接从官网下载 官网有直接的下载命令
# conda
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 -c pytorch
# 方法2:安装whl离线torch包
pip install pytorch.whl
# 方法3:具体操作看上面的gpu安装教程

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
一键安装环境配置requirements.txt
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple -r requirements.txt

 
 
  • 1

其它命令

启动jupyter
jupyter notebook

 
 
  • 1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值