基础岛第二关-8G 显存玩转书生大模型 Demo

1. 使用 Cli Demo 完成 InternLM2-Chat-1.8B 模型的部署,并生成 300 字小故事,记录复现过程并截图。

环境配置

  • 初始硬件设备:使用10%A100 GPU硬件环境,cuda版本选择12.2

  • 创建虚拟环境并安装必备的python库

# 创建python版本3.10环境,命名为demo
conda create -n demo python=3.10 -y 
# 激活环境
conda activate demo
# 在激活的环境中安装 torch,版本如下
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y
# 安装其他依赖
pip install transformers==4.38   # transformer用于InternLM2-Chat-1.8B模型的推理
pip install sentencepiece==0.1.99  #
pip install einops==0.8.0
pip install protobuf==5.27.2
pip install accelerate==0.33.0
pip install streamlit==1.37.0

SentencePiece是一款开源的分词工具,由Google开发并维护。 它采用了基于统计的分词方法,可以将句子切割成具有相同语义的子字符串(即“词”),并生成一个高效的编码表示。 与传统的分词工具不同,SentencePiece支持增量分词和变长分词,可以更加准确地处理各种语言数据。

einops 是一个用于简化数据操作的Python 库,专注于张量的重排、分块以及维度变换等操作。 此库尤其适用于深度学习和图像处理领域。

**Google Protocol Buffers(Protobuf)**是一种轻便、高效的结构化数据存储格式,可以用于结构化数据串行化,很适合做数据存储或RPC数据交换格式。它可用于通信协议、数据存储等领域的语言无关、平台无关扩展的序列化结构数据格式。

Streamlit是一个用于快速创建数据应用程序的Python库。 它提供了一种简单而直观的方式来构建交互式Web应用,这些应用可以展示数据可视化、接受用户输入,并实时更新显示结果。 使用Streamlit,你无需具备Web开发或前端开发经验,只需使用Python语言就能创建出功能强大的数据应用程序。

代码

  • 在root路径下新建cli_demo.py文件
    在这里插入图片描述
  • 相关代码
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

#指定模型路径
model_name_or_path = "/root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b" 

#创建tokenizer对象,用于处理文本数据的编码和解码
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True, device_map='cuda:0')

#加载模型
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='cuda:0')
model = model.eval() #模型推理,不进行梯度回传

#定义系统prompt
system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.
"""

#创建消息列表,存储对话中的消息,初始化包含系统提示。
messages = [(system_prompt, '')]

print("=============Welcome to InternLM chatbot, type 'exit' to exit.=============")

while True:
    input_text = input("\nUser  >>> ") #将用户输入存储在input_text中
    input_text = input_text.replace(' ', '') #将输入内容中的空格删除
    if input_text == "exit":
        break #用户输入exit,退出对话

    length = 0
    #调用模型的stream_chat方法,用于生成对话回复
    for response, _ in model.stream_chat(tokenizer, input_text, messages):
        if response is not None:
            print(response[length:], flush=True, end="") #打印回复并刷新输出
            length = len(response) #记录response已打印长度,用于下次回复输出

部署成功后编写300字故事

在这里插入图片描述

使用streamlit 部署 InternLM2-Chat-1.8B

  • 依然在demo环境中运行代码,并进行端口映射
streamlit run /root/Tutorial/tools/streamlit_demo.py --server.address 127.0.0.1 --server.port 6006

在这里插入图片描述每一次问问题,都需要启动模型进行推理,并输出回复
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2. 使用 LMDeploy 完成 InternLM-XComposer2-VL-1.8B 的部署,并完成一次图文理解对话,记录复现过程并截图。

InternLM-XComposer2 是一款基于 InternLM2 的视觉语言大模型,其擅长自由形式的文本图像合成和理解。其主要特点包括:
自由形式的交错文本图像合成:InternLM-XComposer2 可以根据大纲、详细文本要求和参考图像等不同输入,生成连贯且上下文相关,具有交错图像和文本的文章,从而实现高度可定制的内容创建。
准确的视觉语言问题解决:InternLM-XComposer2 基于自由形式的指令准确地处理多样化和具有挑战性的视觉语言问答任务,在识别,感知,详细标签,视觉推理等方面表现出色。
令人惊叹的性能:基于 InternLM2-7B 的InternLM-XComposer2 在多个基准测试中位于开源多模态模型第一梯队,而且在部分基准测试中与 GPT-4V 和 Gemini Pro 相当甚至超过它们。

LMDeploy 是一个用于压缩、部署和服务 LLM 的工具包,由 MMRazor 和 MMDeploy 团队开发。它具有以下核心功能:
高效的推理:LMDeploy 通过引入持久化批处理、块 KV 缓存、动态分割与融合、张量并行、高性能 CUDA 内核等关键技术,提供了比 vLLM 高 1.8 倍的推理性能。
有效的量化:LMDeploy 支持仅权重量化和 k/v 量化,4bit 推理性能是 FP16 的 2.4 倍。量化后模型质量已通过 OpenCompass 评估确认。
轻松的分发:利用请求分发服务,LMDeploy 可以在多台机器和设备上轻松高效地部署多模型服务。
交互式推理模式:通过缓存多轮对话过程中注意力的 k/v,推理引擎记住对话历史,从而避免重复处理历史会话。
优秀的兼容性:LMDeploy支持 KV Cache Quant,AWQ 和自动前缀缓存同时使用。

激活环境并安装依赖

conda activate demo
pip install lmdeploy[all]==0.5.1
pip install timm==1.0.7

使用 LMDeploy 启动一个与 InternLM-XComposer2-VL-1.8B 模型交互的 Gradio 服务

lmdeploy serve gradio /share/new_models/Shanghai_AI_Laboratory/internlm-xcomposer2-vl-1_8b --cache-max-entry-count 0.1
  • 部署中出现的问题
    。frpc_linux_amd64下载失败
    在这里插入图片描述调查后发现是网络问题,换科学上网后下载该文件,并上传到服务器中的指定文件夹
cd /root/.conda/envs/demo/lib/python3.10/site-packages/gradio
chmod +x frpc_linux_amd64_v0.2 #设置上传文件的权限

在这里插入图片描述请添加图片描述

在这里插入图片描述

3. 使用 LMDeploy 完成 InternVL2-2B 的部署,并完成一次图文理解对话,记录复现过程并截图。

conda activate demo
lmdeploy serve gradio /share/new_models/OpenGVLab/InternVL2-2B --cache-max-entry-count 0.1

在这里插入图片描述

在这里插入图片描述

### 不同GPU型号对训练GNN大模型的影响 当考虑在不同GPU型号上训练大型图神经网络(GNN),特别是NVIDIA GeForce RTX 4060 8GB与RTX 3060 12GB之间的差异时,几个因素会影响性能和适用性。 #### 性能影响的键因素 - **内存容量**:对于大规模GNN模型而言,更大的显存意味着能够处理更大规模的数据集以及更复杂的模型架构。由于RTX 3060拥有12GB的VRAM而RTX 4060仅有8GB,在面对非常庞大的图数据或深层多层的GNN结构时,可能会遇到内存不足的问题[^1]。 - **计算能力**:尽管具体到这两款卡的确切FLOPS数值需查阅官方文档确认,通常来说较新的硬件版本会提供更强的单精度浮点运算能力和更高的Tensor Core效能,这有助于加速矩阵乘法和其他密集型操作的速度,从而提升整体训练速度。 - **功耗与散热设计**:虽然这不是直接影响性能的因素,但在长时间运行深度学习任务期间保持稳定的工作温度至重要。更好的冷却方案可以帮助维持较高的持续频率,进而间接提高效率。 ```python import torch from torch_geometric.datasets import Planetoid from torch_geometric.nn import GCNConv, GATv2Conv from torch_geometric.loader import NeighborSampler device_4060 = 'cuda' if torch.cuda.is_available() and torch.cuda.get_device_name(0)=='GeForce RTX 4060' else 'cpu' device_3060 = 'cuda' if torch.cuda.is_available() and torch.cuda.get_device_name(0)=='GeForce RTX 3060' else 'cpu' dataset = Planetoid(root='/tmp/Cora', name='Cora') data = dataset[0].to(device) class Net(torch.nn.Module): def __init__(self): super().__init__() self.conv1 = GCNConv(dataset.num_features, 16).to(device) self.conv2 = GATv2Conv(16, dataset.num_classes).to(device) model_4060 = Net().to(device_4060) model_3060 = Net().to(device_3060) # Training loop would go here... ``` #### 合适性的考量 考虑到上述提到的各项指标,如果目标是在合理时间内完成高质量的大规模GNN训练,则建议优先选择具备更多资源和支持更好散热特性的设备——即本案例中的RTX 3060 12GB。然而,实际的选择还需依据具体的预算限制和个人需求做出权衡。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值