关联规则与强关联规则计算


关联规则( Association Rules )反映一个事物与
其他事物之间的相互依存性和关联性。如果两个
或者多个事物之间存在一定的关联关系,那么,
其中一个事物就能够通过其他事物预测到。首先
被Agrawal, Imielinski and Swami在1993年的
SIGMOD会议_上提出.

关联规则挖掘是数据挖掘中最活跃的研究方法之
。典型的关联规则发现问题是对超市中的购物
篮数据( Market Basket )进行分析。通过发现
顾客放入购物篮中的不同商品之间的关系来分析
顾客的购买习惯。

  • 关联规则的支持度
    代表规则的重要性

支持度计算在所有的交易集中,既有A又有B的概率D 例 如在5条记录中,既有橙计又有可乐的记录有2条 。 则此条规则的支持度为 2/5=0.4,
Support(A —>B)=P(AB)

对于关联规则R: X=Y,其中Xcl, Ycl,并且
XnY=φ。
规则R的的支持度(Support)是交易集中同时包含X
和Y的交易数与所有交易数之比。
 support  ( X ⇒ Y ) = count ⁡ ( X ∪ Y ) ∣ D ∣ \text { support }(X \Rightarrow Y)=\frac{\operatorname{count}(X \cup Y)}{|D|}  support (XY)=Dcount(XY)

  • 关联规则的置信度
    置信度表示了这条规则有多大程度上值得可信。
    代表规则的可信度
    置信度表示了这条规则有多大程度上值得可信 。设条件 的项的集合为A 结果的集合为B 。 置信度计算在A中 ,同 时也含有B的概率(~P: 厅A ,.th’e,n’ Btn街冉。 即 Confidencel(A---->B)=P{BIA)即置信度就是条件概率

对于关联规则R: X→Y ,
其中Xcl,Ycl,并且
XnY=φ。
规则R的置信度(Confidence)是指包含X和Y的交易
数与包含X的交易数之比

 confidence  ( X → Y ) =  support  ( X ∪ Y )  support  ( X ) \text { confidence }(\mathrm{X} \rightarrow \mathrm{Y})=\frac{\text { support }(\mathrm{X} \cup \mathrm{Y})}{\text { support }(\mathrm{X})}  confidence (XY)= support (X) support (XY)
Confidence ⁡ ( x → Y ) =  Support  ( X ∪ Y )  Support  ( x ) = Count ⁡ ( X ∪ Y ) ∣ D ∣ Count ⁡ ( X ) ∣ D ∣ = C o u n t ( X ∪ Y ) C o u n t ( X ) \operatorname{Confidence}(x \rightarrow Y)=\frac{\text { Support }(\mathrm{X} \cup \mathrm{Y})}{\text { Support }(x)}=\frac{\frac{\operatorname{Count}(\mathrm{X} \cup \mathrm{Y})}{|D|}}{\frac{\operatorname{Count}(\mathrm{X})}{|D|}}=\frac{{Count}(\mathrm{X} \cup \mathrm{Y}) }{{Count}(\mathrm{X})} Confidence(xY)= Support (x) Support (XY)=DCount(X)DCount(XY)=Count(X)Count(XY)

  • 关联规则的最小支持度和最小置信度

    • 关联规则的最小支持度也就是衡量频繁集的最小
      支持度(Minimum Support) ,记为minsup ,它
      用于衡量规则需要满足的最低重要性。
    • 关联规则的最小置信度(Minimum Confidence)
      记为minconf ,它表示关联规则需要满足的最低
      可靠性。
  • 强关联规则
    如果规则R:X------>Y满足  support  ( X ⇒ Y ) ≥ min ⁡ − sup  \text { support }(X \Rightarrow Y) \geq \min _{-} \text {sup }  support (XY)minsup 
     confidence  ( X ⇒ Y ) ≥ min ⁡ − conf  \text { confidence }(X \Rightarrow Y) \geq \min _{-} \text {conf }  confidence (XY)minconf 
    ,称关联规则X=>Y为强关联规则,否则称关联规则X= >Y为弱关联规则。
    在挖掘关联规则时,产生的关联规则要经过minsup和minconf的衡量筛选出来的强关联规则才能用干指旦商家的决策
    eg:
    在这里插入图片描述

 support(A ->C) =  Court(AUC)  ∣ D ∣ = 1 2 > =  minsup = 1 2  Confidence  ( A → C ) =  Support  ( A ∪ C )  Sp  u  port  ( A ) = 66.6 %  >=minconf = 1 2 \begin{array}{l}{\text { support(A ->C)} =\frac{\text { Court(AUC) }}{|D|}=\frac{1}{2} >= \text { minsup} =\frac{1}{2}} \\ {\text { Confidence } (A \rightarrow C)=\frac{\text { Support }(A \cup C)}{\text { Sp } u \text { port }(A)}=66.6 \% \text { >=minconf}} \\ {=\frac{1}{2}}\end{array}  support(A ->C)=D Court(AUC) =21>= minsup=21 Confidence (AC)= Sp u port (A) Support (AC)=66.6% >=minconf=21
support(A)=Count(A)/|D|

即一条规则可表述为,如果一个颐客购买了橙汁,则有 50%(置信度)的可能购买可乐。而这样的情况 ( 即买了橙 汁会再买可乐) 会有4rQ%(支持度)的可能发生E

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ROOOOOOM

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值