《动手学深度学习》组队学习——Task3打卡

  1. 导入后面需要用到的函数
import torch 
from d2l import torch as d2l 
import matplotlib.pyplot as plt
import random 
  1. 生成数据集
def synthetic_data(w, b, num_examples):  
    """生成y=Xw+b+噪声"""
    # 均值为0, 标准差为1, size=(num_examples, len(w)) num_examples表示样本个数, len(w)表示特征个数
    X = torch.normal(0, 1, (num_examples, len(w)))
    # matmul 矩阵乘法
    # X -> (num_examples, len(w)), w为列向量, X @ w -> (num_examples, 1), b为标量
    y = torch.matmul(X, w) + b
    y += torch.normal(0, 0.01, y.shape)
    return X, y.reshape((-1, 1))

true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)
  1. 打印features和labels的shape
print(features.shape, labels.shape)

在这里插入图片描述

  1. 通过生成第二个特征features[:, 1]和labels的散点图, 可以直观观察到两者之间的线性关系。
d2l.set_figsize()
d2l.plt.scatter(features[:, 1].detach().numpy(), labels.detach().numpy(), 1)

在这里插入图片描述

  1. 读取数据集

回想一下,训练模型时要对数据集进行遍历,每次抽取一小批量样本,并使用它们来更新我们的模型。 由于这个过程是训练机器学习算法的基础,所以有必要定义一个函数, 该函数能打乱数据集中的样本并以小批量方式获取数据。

在下面的代码中,我们定义一个data_iter函数, 该函数接收批量大小、特征矩阵和标签向量作为输入,生成大小为batch_size的小批量。 每个小批量包含一组特征和标签。

def data_iter(batch_size, features, labels):
    num_examples = len(features)
    indices = list(range(num_examples))
    # 这些样本是随机读取的,没有特定的顺序
    random.shuffle(indices)
    for i in range(0, num_examples, batch_size):
        batch_indices = torch.tensor(
            indices[i: min(i + batch_size, num_examples)])
        yield features[batch_indices], labels[batch_indices]

通常,我们利用GPU并行运算的优势,处理合理大小的“小批量”。 每个样本都可以并行地进行模型计算,且每个样本损失函数的梯度也可以被并行计算。 GPU可以在处理几百个样本时,所花费的时间不比处理一个样本时多太多。

我们直观感受一下小批量运算:读取第一个小批量数据样本并打印。 每个批量的特征维度显示批量大小和输入特征数。 同样的,批量的标签形状与batch_size相等。

batch_size = 10

for X, y in data_iter(batch_size, features, labels):
    print(X, '\n', y)
    break

在这里插入图片描述

  1. 初始化模型参数
w = torch.normal(0, 0.01, size=(2,1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)
  1. 定义模型
def linreg(X, w, b): 
    """线性回归模型"""
    return torch.matmul(X, w) + b
  1. 定义损失函数
def squared_loss(y_hat, y):  
    """均方损失"""
    return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2
  1. 定义优化算法
def sgd(params, lr, batch_size):  
    """小批量随机梯度下降"""
    # torch.no_grad 只记录计算图中叶子节点的梯度, 减少内存占用
    with torch.no_grad():
        for param in params:
            param -= lr * param.grad / batch_size
            # 需要在下次反向传播之前进行梯度清零, 因为下次计算梯度的时候默认会进行梯度累加
            param.grad.zero_()
  1. 训练
lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss

for epoch in range(num_epochs):
    for X, y in data_iter(batch_size, features, labels):
        l = loss(net(X, w, b), y)  # X和y的小批量损失
        # 因为l形状是(batch_size,1),而不是一个标量。l中的所有元素被加到一起,
        # 并以此计算关于[w,b]的梯度
        l.sum().backward()
        sgd([w, b], lr, batch_size)  # 使用参数的梯度更新参数
    with torch.no_grad():
        train_l = loss(net(features, w, b), labels)
        print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}')

在这里插入图片描述

因为我们使用的是自己合成的数据集,所以我们知道真正的参数是什么。 因此,我们可以通过比较真实参数和通过训练学到的参数来评估训练的成功程度。 事实上,真实参数和通过训练学到的参数确实非常接近。

在这里插入图片描述

参考文献

  • https://zh-v2.d2l.ai/chapter_linear-networks/linear-regression-scratch.html
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值