29题-顺时针打印矩阵

1 题目描述

输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
示例1:

输入:matrix = [[1,2,3],[4,5,6],[7,8,9]]
输出:[1,2,3,6,9,8,7,4,5]

示例2:

输入:matrix = [[1,2,3,4],[5,6,7,8],[9,10,11,12]]
输出:[1,2,3,4,8,12,11,10,9,5,6,7]

限制:

0 <= matrix.length <= 100
0 <= matrix[i].length <= 100

2 解题思路

根据题目示例matrix=[[1,2,3],[4,5,6],[7,8,9]]的对应输出[1,2,3,6,9,8,7,4,5]可以发现,顺时针打印矩阵的顺序是”从左向右、从上向下、从右向左、从下向上“

  • 因此,考虑设定矩阵的”左、上、右、下“四个边界,模拟以上矩阵遍历顺序。

在这里插入图片描述
算法流程:

  1. 空值处理:当matrix为空时,直接返回空列表[]即可。
  2. 初始化:矩阵 左、右、上、下 四个边界l,r,t,b,用于打印的结果列表res。
  3. 循环打印:“从左向右、从上向下、从右向左、从下向上”四个方向循环,每个方向打印中做以下三件事:
    1. 根据边界打印,即将元素按顺序添加至列表res尾部;
    2. 边界向内收缩1(代表已被打印);
    3. 判断是否打印完毕(边界是否相遇),若打印完毕则跳出。
  4. 返回值:判断是否打印完毕(边界是否相遇),若打印完毕则跳出。
打印方向1. 根据边界打印2. 边界向内收缩3. 是否打印完毕
从左向右左边界l,右边界r上边界t加1是否t>b
从上向下上边界t,下边界b右边界r减1是否l>r
从右向左右边界r,左边界l下边界b减1是否t>b
从下向上下边界b,上边界t左边界l加1是否l>r
class Solution {
    public int[] spiralOrder(int[][] matrix) {
        if (matrix.length == 0) return new int[0];
        int l = 0;
        int r = matrix[0].length - 1;
        int t = 0;
        int b = matrix.length - 1;
        int[] res = new int[(r+1)*(b+1)];
        int x = 0;
        while (true) {
            for (int i = l;i <= r;i++) res[x++] = matrix[t][i];
            if (++t > b) break;
            for (int i = t;i <= b;i++) res[x++] = matrix[i][r];
            if (--r < l) break;
            for (int i = r;i >= l;i--) res[x++] = matrix[b][i];
            if (--b < t) break;
            for (int i = b;i >= t;i--) res[x++] = matrix[i][l];
            if (++l > r) break;
        }
        return res;
    }
}

复杂度分析:
时间复杂度 O(MN) : M,N 分别为矩阵行数和列数。
空间复杂度 O(1) : 四个边界 l , r , t , b 使用常数大小的 额外 空间( res 为必须使用的空间)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值