1 题目描述
输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
示例1:
输入:matrix = [[1,2,3],[4,5,6],[7,8,9]]
输出:[1,2,3,6,9,8,7,4,5]
示例2:
输入:matrix = [[1,2,3,4],[5,6,7,8],[9,10,11,12]]
输出:[1,2,3,4,8,12,11,10,9,5,6,7]
限制:
0 <= matrix.length <= 100
0 <= matrix[i].length <= 100
2 解题思路
根据题目示例matrix=[[1,2,3],[4,5,6],[7,8,9]]的对应输出[1,2,3,6,9,8,7,4,5]可以发现,顺时针打印矩阵的顺序是”从左向右、从上向下、从右向左、从下向上“
- 因此,考虑设定矩阵的”左、上、右、下“四个边界,模拟以上矩阵遍历顺序。
算法流程:
- 空值处理:当matrix为空时,直接返回空列表[]即可。
- 初始化:矩阵 左、右、上、下 四个边界l,r,t,b,用于打印的结果列表res。
- 循环打印:“从左向右、从上向下、从右向左、从下向上”四个方向循环,每个方向打印中做以下三件事:
- 根据边界打印,即将元素按顺序添加至列表res尾部;
- 边界向内收缩1(代表已被打印);
- 判断是否打印完毕(边界是否相遇),若打印完毕则跳出。
- 返回值:判断是否打印完毕(边界是否相遇),若打印完毕则跳出。
打印方向 | 1. 根据边界打印 | 2. 边界向内收缩 | 3. 是否打印完毕 |
---|---|---|---|
从左向右 | 左边界l,右边界r | 上边界t加1 | 是否t>b |
从上向下 | 上边界t,下边界b | 右边界r减1 | 是否l>r |
从右向左 | 右边界r,左边界l | 下边界b减1 | 是否t>b |
从下向上 | 下边界b,上边界t | 左边界l加1 | 是否l>r |
class Solution {
public int[] spiralOrder(int[][] matrix) {
if (matrix.length == 0) return new int[0];
int l = 0;
int r = matrix[0].length - 1;
int t = 0;
int b = matrix.length - 1;
int[] res = new int[(r+1)*(b+1)];
int x = 0;
while (true) {
for (int i = l;i <= r;i++) res[x++] = matrix[t][i];
if (++t > b) break;
for (int i = t;i <= b;i++) res[x++] = matrix[i][r];
if (--r < l) break;
for (int i = r;i >= l;i--) res[x++] = matrix[b][i];
if (--b < t) break;
for (int i = b;i >= t;i--) res[x++] = matrix[i][l];
if (++l > r) break;
}
return res;
}
}
复杂度分析:
时间复杂度 O(MN) : M,N 分别为矩阵行数和列数。
空间复杂度 O(1) : 四个边界 l , r , t , b 使用常数大小的 额外 空间( res 为必须使用的空间)。