【动态规划】47题-礼物的最大价值

1 题目描述

在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?

示例1:

输入: 
[
  [1,3,1],
  [1,5,1],
  [4,2,1]
]
输出: 12
解释: 路径 1→3→5→2→1 可以拿到最多价值的礼物

提示:

0 < grid.length <= 200
0 < grid[0].length <= 200

2 解题思路

题目说明:从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。

根据题目说明,易得某单元格只能从上边单元格或左边单元格到达。

f ( i , j ) f(i,j) f(i,j)为从棋盘左上角走至单元格(i,j)的礼物最大累积价值,易得到以下递推关系: f ( i , j ) f(i,j) f(i,j)等于 f ( i , j − 1 ) f(i,j-1) f(i,j1) f ( i − 1 , j ) f(i-1,j) f(i1,j)中的较大值加上当前单元格礼物价值 g r i d ( i , j ) grid(i,j) grid(i,j)
f ( i , j ) = m a x [ f ( i , j − 1 ) , f ( i − 1 , j ) ] + g r i d ( i , j ) f(i,j)=max[f(i,j-1),f(i-1,j)]+grid(i,j) f(i,j)=max[f(i,j1),f(i1,j)]+grid(i,j)
因此,可用动态规划解决此问题,以上公式便为转移方程。
在这里插入图片描述
动态规划解析:

  • 状态定义:设动态规划矩阵dp,dp(i,j)代表从棋盘的左上角开始,到达单元格(i,j)时能拿到礼物的最大累计价值。
  • 转移方程:
    • i = 0 i=0 i=0 j = 0 j=0 j=0时,为起始元素;
    • i = 0 i=0 i=0 j ≠ 0 j\neq0 j=0时,为矩阵第一行元素,只可从左边到达;
    • i ≠ 0 i\neq0 i=0 j = 0 j=0 j=0时,为矩阵第一列元素,只可从上边到达;
    • i ≠ 0 i\neq0 i=0 j ≠ 0 j\neq0 j=0时,可从左边或上边到达;
      d p ( i , j ) = { g r i d ( i , j ) i = 0 , j = 0 g r i d ( i , j ) + d p ( i , j − 1 ) i = 0 , j ≠ 0 g r i d ( i , j ) + d p ( i − 1 , j ) i ≠ 0 , j = 0 g r i d ( i , j ) + m a x [ d p ( i − 1 , j ) , d p ( i , j − 1 ) ] i ≠ 0 , j ≠ 0 dp(i,j)=\left\{ \begin{array}{lcl} grid(i,j) & & i=0,j=0\\ grid(i,j)+dp(i,j-1) & & i=0,j\neq0\\ grid(i,j)+dp(i-1,j) & & i\neq0,j=0\\ grid(i,j)+max[dp(i-1,j),dp(i,j-1)] & & i\neq0,j\neq0 \end{array} \right. dp(i,j)=grid(i,j)grid(i,j)+dp(i,j1)grid(i,j)+dp(i1,j)grid(i,j)+max[dp(i1,j),dp(i,j1)]i=0,j=0i=0,j=0i=0,j=0i=0,j=0
  • 初始状态:dp[0][0]=grid[0][0],即到达单元格(0,0)时能拿到礼物的最大累积价值为grid[0][0];
  • 返回值:dp[m-1][n-1],m,n分别为矩阵的行高和列宽,即返回dp矩阵右下角元素。

空间复杂度优化:

  • 由于 dp[i][j] 只与 dp[i−1][j] , dp[i][j−1] , grid[i][j] 有关系,因此可以将原矩阵 grid 用作 dp 矩阵,即直接在 grid 上修改即可。
  • 应用此方法可省去 dp 矩阵使用的额外空间,因此空间复杂度从 O(MN) 降至 O(1) 。
class Solution {
    public int maxValue(int[][] grid) {
        int m = grid.length;
        int n = grid[0].length;
        for (int i = 0;i < m;i++) {
            for (int j = 0;j < n;j++) {
                if (i == 0 && j == 0) continue;
                else if (i == 0) grid[i][j] += grid[i][j-1];
                else if (j == 0) grid[i][j] += grid[i-1][j];
                else grid[i][j] += Math.max(grid[i-1][j],grid[i][j-1]);
            }
        }
        return grid[m-1][n-1];
    }
}

复杂度分析:

  • 时间复杂度 O(MN) : M,N 分别为矩阵行高、列宽;动态规划需遍历整个 grid 矩阵,使用 O(MN) 时间。
  • 空间复杂度 O(1) : 原地修改使用常数大小的额外空间。
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页