【二分查找】53题-0~n-1中缺失的数字

1 题目描述

一个长度为n-1的递增排序数组中的所有数字都是唯一的,并且每个数字都在范围0~n-1之内。在范围0~n-1内的n个数字中有且只有一个数字不在该数组中,请找出这个数字。

示例1:

输入: [0,1,3]
输出: 2

示例2:

输入: [0,1,2,3,4,5,6,7,9]
输出: 8

限制:

1 <= 数组长度 <= 10000

2 解题思路

方法1:遍历

class Solution {
    public int missingNumber(int[] nums) {
        int p = 0;
        for (int i = 0;i < nums.length;i++) {
            if (nums[i] != p) return p;
            else p++;
        }
        if (nums[nums.length - 1] != nums.length) return nums.length;
        return 0;
    }
}

方法2:二分法

  • 排序数组中的搜索问题,首先想到二分法解决。
  • 根据题意,数组可以按照以下规则划分为两部分。
    • 左子数组: n u m s [ i ] = i nums[i]=i nums[i]=i
    • 右子数组: n u m s [ i ] ≠ i nums[i] \neq i nums[i]=i
  • 缺失的数字等于“右子数组的首位元素”对应的索引;因此考虑使用二分法查找“右子数组的首位元素”。

在这里插入图片描述
算法解析:

  1. 初始化:左边界i=0,右边界j=len(nums)-1;代表闭区间[i,j]。
  2. 循环二分:当 i ≤ j i \leq j ij时循环(即当闭区间[i,j]为空时跳出);
    1. 计算中点m=(i+j)/2;
    2. 若nums[m]=m,则“右子数组的首位元素”一定在闭区间[m+1,j]中,因此执行i=m+1;
    3. n u m s [ m ] ≠ m nums[m] \neq m nums[m]=m,则“左子数组的末位元素”一定在闭区间[i,m-1]中,因此执行j=m-1;
  3. 返回值:跳出时,变量i和j分别指向“右子数组的首位元素”和“左子数组的末位元素”。因此返回i即可。
class Solution {
    public int missingNumber(int[] nums) {
        int i = 0;
        int j = nums.length - 1;
        while (i <= j) {
            int m = (i + j) / 2;
            if (nums[m] == m) i = m + 1;
            else j = m - 1;
        }
        return i;
    }
}

复杂度分析:

  • 时间复杂度 O(logN): 二分法为对数级别复杂度。
  • 空间复杂度 O(1): 几个变量使用常数大小的额外空间。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值