1 题目描述
一个长度为n-1的递增排序数组中的所有数字都是唯一的,并且每个数字都在范围0~n-1之内。在范围0~n-1内的n个数字中有且只有一个数字不在该数组中,请找出这个数字。
示例1:
输入: [0,1,3]
输出: 2
示例2:
输入: [0,1,2,3,4,5,6,7,9]
输出: 8
限制:
1 <= 数组长度 <= 10000
2 解题思路
方法1:遍历
class Solution {
public int missingNumber(int[] nums) {
int p = 0;
for (int i = 0;i < nums.length;i++) {
if (nums[i] != p) return p;
else p++;
}
if (nums[nums.length - 1] != nums.length) return nums.length;
return 0;
}
}
方法2:二分法
- 排序数组中的搜索问题,首先想到二分法解决。
- 根据题意,数组可以按照以下规则划分为两部分。
- 左子数组: n u m s [ i ] = i nums[i]=i nums[i]=i;
- 右子数组: n u m s [ i ] ≠ i nums[i] \neq i nums[i]=i
- 缺失的数字等于“右子数组的首位元素”对应的索引;因此考虑使用二分法查找“右子数组的首位元素”。
算法解析:
- 初始化:左边界i=0,右边界j=len(nums)-1;代表闭区间[i,j]。
- 循环二分:当
i
≤
j
i \leq j
i≤j时循环(即当闭区间[i,j]为空时跳出);
- 计算中点m=(i+j)/2;
- 若nums[m]=m,则“右子数组的首位元素”一定在闭区间[m+1,j]中,因此执行i=m+1;
- 若 n u m s [ m ] ≠ m nums[m] \neq m nums[m]=m,则“左子数组的末位元素”一定在闭区间[i,m-1]中,因此执行j=m-1;
- 返回值:跳出时,变量i和j分别指向“右子数组的首位元素”和“左子数组的末位元素”。因此返回i即可。
class Solution {
public int missingNumber(int[] nums) {
int i = 0;
int j = nums.length - 1;
while (i <= j) {
int m = (i + j) / 2;
if (nums[m] == m) i = m + 1;
else j = m - 1;
}
return i;
}
}
复杂度分析:
- 时间复杂度 O(logN): 二分法为对数级别复杂度。
- 空间复杂度 O(1): 几个变量使用常数大小的额外空间。