剑指offer——连续子数组的最大和
问题描述
HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。给一个数组,返回它的最大连续子序列的和,你会不会被他忽悠住?(子向量的长度至少是1)
思路分析
1.先判断数组是否为空,数组长度是否小于等于0,若是返回-1。
2.定义两个参数,一个记录当前的子数组和,一个记录最大的子数组和。
3.遍历数组,如果遍历到某个元素i,当前子数组和为负,则子数组和从i开始重新计算更新为array[i]的值。
如:{6, -3, -2, 7, -15, 1, 2, 2}
6, -3, -2, 7, -15, 1, 2, 2
^
i=0, cursum=6 greatsum=6
6, -3, -2, 7, -15, 1, 2, 2
^
i=1, cursum=3 greatsum=6
6, -3, -2, 7, -15, 1, 2, 2
^
i=2, cursum=1 greatsum=6
6, -3, -2, 7, -15, 1, 2, 2
^
i=3, cursum=8 greatsum=8 ...
特殊情况举例:
{1,-2,3,10}
i=0,cursum=1 greatsum=1
i=1,cursum=-1 greatsum=1
i=2,cursum=2 比3本身都小,所以子数组从3开始重新计算。
代码
public class Solution {
public int FindGreatestSumOfSubArray(int[] array) {
if(array==null||array.length<=0){
return -1;
}
int CurSum=0;
int GreatSum=0x80000000;
//此处没有初始为0,是因为有可能整个数组都是负数,所以和不可能为0;
//0x80000000代表32位有符号整数的最小值
for(int i=0;i<array.length;i++){
if(CurSum<=0){
CurSum= array[i];
}
else
CurSum+=array[i];
if(CurSum>GreatSum){
GreatSum=CurSum;
}
}
return GreatSum;
}
}