机器学习
potpof
这个作者很懒,什么都没留下…
展开
-
无监督学习--K-means聚类算法学习
无监督学习–K-means聚类算法学习介绍:k-means算法以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,而簇间的相似度比较低。其处理过程如下:1、随机选择k个点作为初始的聚类中心; 2、对于剩下的点,根据其与聚类中心的距离,将其归入最近的簇;3、对每个簇,计算所有点的均值作为新的聚类中心;4、重复2、3直到聚类中心不再发生变化;数据介绍:现有1999年全国31...原创 2019-01-29 10:49:05 · 8331 阅读 · 0 评论 -
无监督学习--DBSCAN密度聚类方法及应用
DBSCAN 算法是一种基于密度的聚类算法:聚类的时候不需要预定指定簇的个数最终得簇的个数不定DBSCAN算法将数据点分为三类:核心点:在半径Eps内含有超过MinPts数目的点边界点:在半径Eps内点的数量小于MinPts,但是落在核心点的邻域内噪音点:既不是核心点也不是边界点的点!!算法流程!!将所有点标记为核心点,边界点或噪音点;删除噪声点;为距离在Eps之内...原创 2019-01-30 15:50:06 · 851 阅读 · 0 评论 -
kmeans 图像分割
import numpy as npimport PIL.Image as imagefrom sklearn.cluster import KMeansdef loadData(filePath):f = open(filePath,‘rb’)data = []img = image.open(f)m,n = img.sizefor i in range(m):for j in...原创 2019-02-16 16:40:28 · 395 阅读 · 0 评论