mmsegmetation学习笔记

今天是学习mmseg的第二节课,这节课主要是教了mmseg的使用。

mmseg框架的runner发现和mmcls和mmdet不太一样,它的默认框架是基于iterbasedrunner,这种做法的好处就是可以更细的保存权重,一定程度上能提高保存的权重的性能,但是可能习惯了epochbaserunner的不太习惯。

其次,通过mmseg发现了segformer,之前的学习都是使用unet之前经典的模型,但是segformer是基于transformer的分割模型,性能更好。也让我知道了其他更多的sota模型,相信在未来会用到。

最后一个收获是通过这次课程,了解到了很多图像分割的数据集,再一次让我发现kaggle的魅力之处,不仅比赛多,能学到经验,还可以找到自己需要的数据集。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

llzw

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值