今天是学习mmseg的第二节课,这节课主要是教了mmseg的使用。
mmseg框架的runner发现和mmcls和mmdet不太一样,它的默认框架是基于iterbasedrunner,这种做法的好处就是可以更细的保存权重,一定程度上能提高保存的权重的性能,但是可能习惯了epochbaserunner的不太习惯。
其次,通过mmseg发现了segformer,之前的学习都是使用unet之前经典的模型,但是segformer是基于transformer的分割模型,性能更好。也让我知道了其他更多的sota模型,相信在未来会用到。
最后一个收获是通过这次课程,了解到了很多图像分割的数据集,再一次让我发现kaggle的魅力之处,不仅比赛多,能学到经验,还可以找到自己需要的数据集。