- 博客(676)
- 资源 (30)
- 收藏
- 关注
原创 验证曲线(validation_curve)项目实战
validation_curve验证曲线,可确定不同参数值下的训练和测试分数根据指定参数的不同值计算估计器的得分这与使用一个参数的网格搜索类似。不过,这也会计算训练得分,只是一个用于绘制结果的工具。
2023-10-01 21:28:47
257
原创 K折交叉验证——cross_val_score函数使用说明
正常情况下,在数据集划分阶段,通常会划分为训练集trainset和测试集testset,在数据集数量足够多的情况下进行划分,效果较好。但是,对于数据集特别少的情况下,直接划分为训练集和测试集进行训练,模型的效果可能不太好,此时便引入了交叉验证。交叉验证Cross-validation思想很简单,就是对划分好的训练集再进行划分,分为训练集trainset和验证集validset。
2023-10-01 15:49:56
851
原创 数据集划分——train_test_split函数使用说明
当我们拿到数据集时,首先需要对数据集进行划分训练集和测试集,sklearn提供了相应的函数供我们使用。
2023-09-30 18:21:12
619
原创 十、补码朴素贝叶斯算法(Complement NB,Complement Naive Bayes)(有监督学习)
Rennie 等人(2003 年)所描述的补码朴素贝叶斯分类器Complement Naive Bayes 分类器该分类器旨在纠正标准多项式直觉贝叶斯分类器的 “严重假设”。
2023-09-24 15:35:02
124
原创 八、多项式朴素贝叶斯算法(Multinomial NB,Multinomial Naive Bayes)(有监督学习)
Multinomial Naive Bayes:用于多项式模型的Naive Bayes分类器。
2023-09-24 15:00:53
249
原创 九、伯努利朴素贝叶斯算法(Bernoulli NB,Bernoulli Naive Bayes)(有监督学习)
Bernoulli Naive Bayes:用于多元伯努利模型的Naive Bayes分类器。
2023-09-24 11:50:50
344
原创 七、高斯朴素贝叶斯算法(Gaussian NB,Gaussian Naive Bayes)(有监督学习)
高斯朴素贝叶斯Gaussian Naive Bayes (GaussianNB).可通过对模型参数进行在线更新。
2023-09-24 11:15:00
322
原创 六、决策树算法(DT,DecisionTreeClassifier)(有监督学习)
决策树(DT)是一种用于分类和回归的非参数监督学习方法。其目标是创建一个模型,通过学习从数据特征中推断出的简单决策规则来预测目标变量的值。一棵树可以看作是一个片断常数近似值。
2023-09-22 11:49:31
215
原创 五、核支持向量机算法(NuSVC,Nu-Support Vector Classification)(有监督学习)
和支持向量分类(Nu-Support Vector Classification),与 SVC 类似,但使用来控制支持向量的数量,其实现基于libsvm。
2023-09-22 09:51:29
495
原创 四、线性支持向量机算法(LinearSVC,Linear Support Vector Classification)(有监督学习)
线性支持向量机,Linear Support Vector Classification.与参数内核为线性的SVC类似(),但使用而非libsvm实现,因此和是类似的,只不过LinearSVC()是通过liblinear实现的;而SVC(kernel=’linear’)通过libsvm实现的;相较于SVC(kernel=’linear’),LinearSVC)(在选择惩罚和损失函数时更具灵活性,并能更好地扩展到大量样本。
2023-09-21 09:20:16
232
原创 三、支持向量机算法(SVC,Support Vector Classification)(有监督学习)
支持向量机Support Vector Machine,就是所谓的SVM,它指的是一系列的机器学习算法,根据解决问题的不同,分为SVC(分类)和SVR(回归)SVC,Support Vector Classification,其本质也是支持向量机,只不过是用于分类任务SVR,Support Vector Regression,其本质也是支持向量机,只不过是用于回归任务本专栏主要是分类算法的总结,主要介绍SVC(C-支持向量分类器)其实现基于libsvm。
2023-09-20 11:18:04
518
原创 一、K近邻算法(K-NN,K-Nearest Neighbor Classifier )(有监督学习)
K近邻算法,k-nearest neighbor,即K-NN通俗来说:给定一个元素,然后以该元素坐标为圆心开始画圆,其中K值是超参数需要人为给定,圆的半径逐渐增大(距离度量采用欧氏距离),直到包含其他K个元素为止,然后看所包含的K个元素都属于哪些类别,根据决策规则(采用少数服从多数原则),看K个元素属于哪些类别多,那么x就归为哪类。应用场景:已知有两个类别绿色五边形和蓝色六边形,新加入一个橙色元素x,问x可归为哪一类?
2023-09-16 11:56:05
159
原创 GPU版PyTorch对应安装教程
这个是CUDA driver version,值要大于CUDA runtime version(最终进行筛选,CUDA runtime version可以是。因为我的电脑比较老,然后选择之前的版本CUDA进行下载安装。的算力,(2008年奥运限定款电脑 哈哈哈哈),找到CUDA为10.1的进行安装。的算力,对应可以选择。,打开命令窗口,输入。
2023-08-03 21:44:36
3632
原创 七、一百零二类花分类项目实战
包括train和valid文件,分别存放102个文件,对应102种类别的花为和键值对将压缩包进行解压,跟项目放到同级路径下。
2023-06-29 10:01:24
2058
原创 三、MNIST手写数字分类任务项目实战
分类任务和回归任务本质上并没有太大的区别,只是最终得到的结果和损失函数不同而已。MNIST手写数字分类任务,最终得到的是10个值,也类似一个one-hot编码格式,表示该图片是0-9数字的概率,概率值最大的就是预测的最终结果当然标签也得是one-hot编码格式,例如标签图片是,对应网络模型:1*784,通过隐藏层转化为128个特征,再转换为10个输出结果,最后连接一个Softmax转化为每个类别的概率值分类问题一般使用交叉熵损失函数。
2023-06-20 17:26:49
585
原创 一、PyTorch基础
模型权重加载一般用于模型训练中断,需要使用上次的权重参数接着训练,此时就需要先保存模型,然后再加载权重参数即可。例如,打开pytorch官网中的随便一个项目,复制粘贴即可运行,下载相关权重参数文件的时候需要科学上网。调用别人训练好的网络架构以及权重参数,最终通过一行代码就可以搞定。这里使用一个最简单的两层线性层进行搭建模型,训练的数据都是单一一个。当然,这只是训练模型的完整代码,最后的测试和保存模型权重,参考。这里为了简单起见,x样本为0-9,10个数,用列表存储。matrix矩阵,通常是多个维度的。
2023-06-14 22:09:20
1056
原创 八、Python结合Qt实现点击按钮保存并生成自定义word详细讲解(相信我,耐心看完,一定会有收获的)
Python结合Qt实现点击按钮保存并生成自定义word详细讲解(相信我,耐心看完,一定会有收获的)
2023-04-18 19:32:05
1002
RFID模块+WIFI模块+振动传感器+有源蜂鸣器+舵机+Arduino UNO R3所构成的门禁系统模块所用APP
2022-04-28
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人