Beamforming相关论文笔记/(ㄒoㄒ)/~~



论文1:Deep Learning-based Phase Reconfiguration for Intelligent Reflecting Surfaces

原文链接http://arxiv.org/abs/2009.13988
思想:利用DNN去逼近基于LS方法的信道估计性能,并进行下行链路波束赋形设计。
场景:MISO系统场景。
信道估计:对上行链路进行信道估计,采用TDD传输技术,并且采用了信道的互易性(上行链路与下行链路一样),这样对上行链路进行信道估计不用考虑波束赋形矩阵,减少参数(如果对下行链路进行信道估计还需要考虑波束赋形矩阵,参数规模与BS天线数目成正比)。其中每个时隙t接收的反射导频信号被建模为:
在这里插入图片描述
BS、IRS阵列响应分别为:
在这里插入图片描述
在这里插入图片描述
BS-User链路与IRS-User链路采用SV模型,分别为:
在这里插入图片描述
在这里插入图片描述
BS接收的所有导频信号为:
在这里插入图片描述
其中相位矩阵是T × (N+1)矩阵,其秩为min{T, N+1}。假设T ≥ N+1,则可以采用LS估计器:
在这里插入图片描述
其中:在这里插入图片描述
接下来就可以利用估计的信道来计算下行链路波束赋形矩阵与IRS相位。
联合优化:如果BS已知的是perfect CSI,联合优化可采用交替优化算法求解:
在这里插入图片描述
我们可以利用这个代入估计的信道,交替优化波束赋形矩阵与IRS相位。当然这样会造成信息损失。
基于深度学习的优化:针对不同的T(总时隙数),提出两种DNN:
第一个CNN,T = N+1,这样可以获得基于LS方法下的w,Φ优解,二者作为标签,接收导频信号作为网络输入,进行监督学习。网络由3层隐藏层组成,损失函数采用MSE。
第二个CNN,T<N+1(此情况下好处是减少了接收导频开销),仍然采用T=N+1下基于LS方法下的w,Φ优解作为标签,接收导频信号作为网络输入,进行监督学习。网络由4层隐藏层组成,损失函数采用MSE。
仿真结果在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
提出的DL方案性能还是不错的,收敛快,鲁棒性高,优化误差小。

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值