小G砍树(换根dp进阶)

链接:https://ac.nowcoder.com/acm/contest/375/C
来源:牛客网

时间限制:C/C++ 1秒,其他语言2秒
空间限制:C/C++ 262144K,其他语言524288K
64bit IO Format: %lld

题目描述

给你一棵n个节点的带标号无根树。每次,你可以选择一个度数为1的节点并将它从树上移除。问总共有多少种不同的方式能将这棵树删到只剩 1 个点。两种方式不同当且仅当至少有一步被删除的节点不同。

输入描述:

第一行一个数n。接下来n-1行,描述这棵树的n-1条边。节点编号为1~n。

输出描述:

一行一个正整数,表示方案数对998244353取模的值。

示例1

输入

复制

4
1 2
1 3
1 4

输出

复制

12

备注:

n≤100000

在cf遇到一个换根的题之后在牛客上找了这个换根题。。排列组合加换根dp吧。

其实,排列组合那里比较难。想了很久,不太会。然后百度别人的做法:

l来自:https://blog.csdn.net/qq_37025443/article/details/88416514

他这个虽然字比较长,但是讲的很详细。

每次一个子树u,那么就会有1到siz[u]的删除编号。对于某个儿子结点v。从1到siz[u]-1选 siz[v]个顺序给v,然后继续递归即可。

如果我自己想的话很难想到这样做。是个狠题~

 

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e5+10;
const ll mod=998244353;
ll powmod(ll a,ll b){ll res=1;for(;b;b>>=1){if(b&1)
res=res*a%mod;a=a*a%mod;}return res%mod;}
ll inv(ll x){return powmod(x,mod-2);}
vector<int>G[N];
ll dp[N],siz[N],f[N],ans;
int n;
void init(){
	f[0]=1;
	for(ll i=1;i<=1e5;i++){
		f[i]=f[i-1]*i%mod;
	}
}
ll C(ll n,ll m){return ((f[n]*inv(f[m]))%mod)*inv(f[n-m])%mod;}

void dfs(int u,int fa){
	dp[u]=siz[u]=1;
	for(auto v:G[u]){
		if(v==fa) continue;
		dfs(v,u);
		siz[u]+=siz[v];
	}
	ll sum=0;
	for(auto v: G[u]){
		if(v==fa) continue;
		ll a=siz[u]-1-sum;
		ll b=siz[v];
		dp[u]=((dp[u]*C(a,b))%mod*dp[v])%mod;
		sum+=siz[v];
	}
}
void dfs1(int u,int fa){
	for(auto v:G[u]){
		if(v==fa) continue;
		ll tmp=(dp[u]*inv(C(n-1,siz[v])))%mod*inv(dp[v])%mod;
		dp[v]=dp[v]*C(n-1,n-siz[v])%mod*tmp%mod;
		dfs1(v,u);
	}
}
int main(){
	init();
	scanf("%d",&n);
	for(int i=1;i<n;++i){
		int u,v;
		scanf("%d%d",&u,&v);
		G[u].push_back(v);
		G[v].push_back(u);
	}
	dfs(1,0);
	dfs1(1,0);
	for(int i=1;i<=n;++i) ans=(ans+dp[i])%mod;
	printf("%lld\n",ans);
} 

 

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长沙大学ccsu_deer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值