链接:https://ac.nowcoder.com/acm/contest/375/C
来源:牛客网
时间限制:C/C++ 1秒,其他语言2秒
空间限制:C/C++ 262144K,其他语言524288K
64bit IO Format: %lld
题目描述
给你一棵n个节点的带标号无根树。每次,你可以选择一个度数为1的节点并将它从树上移除。问总共有多少种不同的方式能将这棵树删到只剩 1 个点。两种方式不同当且仅当至少有一步被删除的节点不同。
输入描述:
第一行一个数n。接下来n-1行,描述这棵树的n-1条边。节点编号为1~n。
输出描述:
一行一个正整数,表示方案数对998244353取模的值。
示例1
输入
复制
4
1 2
1 3
1 4
输出
复制
12
备注:
n≤100000
在cf遇到一个换根的题之后在牛客上找了这个换根题。。排列组合加换根dp吧。
其实,排列组合那里比较难。想了很久,不太会。然后百度别人的做法:
l来自:https://blog.csdn.net/qq_37025443/article/details/88416514
他这个虽然字比较长,但是讲的很详细。
每次一个子树u,那么就会有1到siz[u]的删除编号。对于某个儿子结点v。从1到siz[u]-1选 siz[v]个顺序给v,然后继续递归即可。
如果我自己想的话很难想到这样做。是个狠题~
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e5+10;
const ll mod=998244353;
ll powmod(ll a,ll b){ll res=1;for(;b;b>>=1){if(b&1)
res=res*a%mod;a=a*a%mod;}return res%mod;}
ll inv(ll x){return powmod(x,mod-2);}
vector<int>G[N];
ll dp[N],siz[N],f[N],ans;
int n;
void init(){
f[0]=1;
for(ll i=1;i<=1e5;i++){
f[i]=f[i-1]*i%mod;
}
}
ll C(ll n,ll m){return ((f[n]*inv(f[m]))%mod)*inv(f[n-m])%mod;}
void dfs(int u,int fa){
dp[u]=siz[u]=1;
for(auto v:G[u]){
if(v==fa) continue;
dfs(v,u);
siz[u]+=siz[v];
}
ll sum=0;
for(auto v: G[u]){
if(v==fa) continue;
ll a=siz[u]-1-sum;
ll b=siz[v];
dp[u]=((dp[u]*C(a,b))%mod*dp[v])%mod;
sum+=siz[v];
}
}
void dfs1(int u,int fa){
for(auto v:G[u]){
if(v==fa) continue;
ll tmp=(dp[u]*inv(C(n-1,siz[v])))%mod*inv(dp[v])%mod;
dp[v]=dp[v]*C(n-1,n-siz[v])%mod*tmp%mod;
dfs1(v,u);
}
}
int main(){
init();
scanf("%d",&n);
for(int i=1;i<n;++i){
int u,v;
scanf("%d%d",&u,&v);
G[u].push_back(v);
G[v].push_back(u);
}
dfs(1,0);
dfs1(1,0);
for(int i=1;i<=n;++i) ans=(ans+dp[i])%mod;
printf("%lld\n",ans);
}