Educational Codeforces Round 72 D. Coloring Edges(拓扑判环)

题目链接

题意:现在有n个点,m条有向边,现在要对这m条有向边染色,染色的要求是在一个环里面的边的颜色不能相同,现在让你求出最少要几种颜色,才能满足条件的染色。

题解:首先很显然要是这个图里面连环都没有,肯定每条边都染1就行了。现在就是处理这个图里面有环的情况,要是图里面有环(题中说明没有自环),每条有向边的两个端点肯定是一个大一个小,所以要是有环的话,肯定满足有一些有向边是编号小的指向编号大的,另一些是大的指向小的(如果有环,肯定满足这个条件,不然形成不了环),所以我们直接小的节点指向大的节点的边染色“1”,大的节点指向小的节点的边染色“2",这样就肯定能满足条件。所以这个题最终就是判断这个图里面有没有环(拓扑,dfs判环都可以)。

#include <iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<map>
#include<queue>
#include<set>
#include<cmath>
#include<stack>
#include<string>

const int mod = 1e9 + 7;
const int maxn = 2e5 + 5;
const int inf = 1e7;
const long long onf = 1e18;
#define me(a, b) memset(a,b,sizeof(a))
#define lowbit(x) x&(-x)
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define PI 3.14159265358979323846
typedef long long ll;
typedef unsigned long long ull;
using namespace std;
vector<int> maps[maxn];
int in[maxn];
int u[maxn], v[maxn];
bool vis[maxn];
int n, m;

bool check() {///拓扑判环
    for (int i = 1; i <= n; i++) {
        int temp = -1;
        for (int j = 1; j <= n; j++)
            if (!in[j] && !vis[j]) {
                temp = j, vis[j] = 1;
                break;
            }
        if (temp == -1)
            return 0;
        for (int j = 0; j < maps[temp].size(); j++)
            in[maps[temp][j]]--;
    }
    return 1;
}

int main() {
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= m; i++) {
        scanf("%d%d", &u[i], &v[i]);
        maps[u[i]].push_back(v[i]);
        in[v[i]]++;
    }
    if (check()) {
        puts("1");
        for (int i = 1; i <= m; i++)
            printf("1 ");
    } else {
        puts("2");
        for (int i = 1; i <= m; i++) {
            if (v[i] > u[i])
                printf("1 ");
            else
                printf("2 ");
        }
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值