Comet OJ - Contest #8 D 菜菜种菜(树状数组)

题目链接

题意:现在有n个点,编号1-n,每个点都有自己的权值。现在有一些单向边。现在给出询问区间,需要求出满足在该区间内没有点能够直接到达该点的点的权值和(可能有点绕,但是中文题目问题应该不大)。

题解:比赛时自己写的莫队,一直过不了,之前自己还做过类似的题,这里有一道这个题的低版型可以先看看传送门。好了,说下这道题应该怎么搞吧。首先我们要清楚,要是该点在询问区间内有点能够直接到达,说明这个点不满足条件。所以我们就可以先处理出每个点要被取得范围(声明两个数组,l[maxn], r[maxn]),l[i]表示能够取到i点的左边界,r[i]同理。先假如询问区间为[L,R]。要是l[i]<L<i<R<r[i],就说明在这次询问里,i点是满足条件的。现在就是怎么维护这个范围了。我们先将询问离线,按右边界排序,拍完了过后,就可以开始处理了。我们从1开始,用树状数组来维护,我们在当前点的左端点加上该点的值,然后在右端点减去该点的值(差分),因为l[i]要小于问询区间的L的点才满足条件,后面以L求前缀和,就是该问询区间的答案了,细节看代码。

#pragma comment(linker, "/STACK:102400000,102400000")

#include <iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<map>
#include<queue>
#include<set>
#include<cmath>
#include<stack>
#include<string>

const int mod = 998244353;
const int maxn = 1e6 + 5;
const int inf = 1e9;
const long long onf = 1e18;
#define me(a, b) memset(a,b,sizeof(a))
#define lowbit(x) x&(-x)
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define PI 3.14159265358979323846
typedef long long ll;
typedef unsigned long long ull;
using namespace std;
int sum[maxn], val[maxn], ans[maxn];
int n, m, q;
int l[maxn], r[maxn];

struct node {
    int l, r, id;

    bool friend operator<(node a, node b) {
        return a.r < b.r;
    }
} a[maxn];

struct Node {
    int l, r, val;
};
vector<Node> maps[maxn];

void push_date(int pos, int val) {
    while (pos <= n) {
        sum[pos] += val;
        pos += lowbit(pos);
    }
}

int query(int pos) {
    int ans = 0;
    while (pos) {
        ans += sum[pos];
        pos -= lowbit(pos);
    }
    return ans;
}

int main() {
    scanf("%d%d%d", &n, &m, &q);
    for (int i = 1; i <= n; i++) {
        scanf("%d", &val[i]);
        l[i] = 0, r[i] = n + 1;
    }
    for (int i = 1; i <= m; i++) {
        int u, v;
        scanf("%d%d", &u, &v);
        if (v > u)
            r[u] = min(r[u], v);
        else
            l[u] = max(l[u], v);
    }
    for (int i = 1; i <= q; i++) {
        scanf("%d%d", &a[i].l, &a[i].r);
        a[i].id = i;
    }
    for (int i = 1; i <= n; i++) {
        maps[i].push_back(Node{l[i] + 1, i + 1, val[i]});///因为询问区间要包含i点,所以右端点是i
        maps[r[i]].push_back(Node{l[i] + 1, i + 1, -val[i]});///当不在这个区间后,要减去该点的影响
    }
    sort(a + 1, a + 1 + q);
    int nowpos = 1;
    for (int i = 1; i <= q; i++) {
        while (nowpos <= a[i].r) {
            for (int j = 0; j < maps[nowpos].size(); j++) {
                push_date(maps[nowpos][j].l, maps[nowpos][j].val);
                push_date(maps[nowpos][j].r, -maps[nowpos][j].val);
            }
            nowpos++;
        }
        ans[a[i].id] = query(a[i].l);
    }
    ll Ans = 0;
    for (int i = 1; i <= q; i++) {
        Ans ^= (ll) ans[i] * i;
    }
    printf("%lld\n", Ans);
    return 0;
}

 

©️2020 CSDN 皮肤主题: 创作都市 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值