中国大学慕课《数据挖掘与python实践》第七单元测验

这篇博客内容涉及数据挖掘课程的KMeans聚类练习,包括如何使用sklearn库进行KMeans模型训练,查看样本簇标签,讨论不同聚类方法的特点,如KMeans、凝聚层次聚类、DBSCAN等。同时,涵盖了聚类效果评估、相似度度量、距离计算方法以及属性类型等相关知识。
摘要由CSDN通过智能技术生成

1.通过代码”from sklearn.cluster import KMeans”引入Kmenas模块,生成模型对象“kmeans = KMeans(n_clusters=2)”后,对于数据X训练时要调用的方法是()。
在这里插入图片描述
2.通过代码”from sklearn.cluster import KMeans”引入Kmenas模块后,生成模型对象“kmeans = KMeans(n_clusters=3)”并完成对数据X完成聚类后,以下哪个代码可以查看每个样本所属簇的标签()。
在这里插入图片描述
3.以下哪种情况对Kmeans模型的影响较小()。
在这里插入图片描述
4.在利用sklearn.cluster.AgglomerativeClustering进行凝聚聚类时,使用的默认距离度量是()。
在这里插入图片描述
5.根据聚类形成的簇的特点,如果有交集的簇之间必然存在包含关系,这种聚类称为( )。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值