博弈之巴什博奕

巴什博奕Bash Game是指这样的一个问题

有一个含有n个物品的堆,两个人轮流从这堆物品中取物品, 规定每次至少取一个,最多取m个。最后取光者获胜。问你最后谁能获得胜利?

其实这个游戏不是靠运气获胜,只要知道原理,这个游戏其实是只和先手或后手有关的。

现在我们假设有7个物品,每次最多取3个,即 n = 7,m = 3

那么其实是先手必胜的,为什么呢?我们来看看分析。

先手第一次拿走3个,那么现在剩下4个,设后手取走k( 1 ≤ k ≤ 3 )个,那么先手就拿4-k个,因为k最小为1,则4-k最大为3,因此先手是可以取完的

显然,如果n = m + 1,那么由于一次最多只能取m个,所以,无论先取者拿走多少个,后取者都能够保证一次拿走剩余的物品,所有后者取胜。

我们发现了如何取胜的方法:如果 n=(m+1)*r +s,(r为任意自然数,s ≤ m),那么只要先取者率先拿走s个物品,如果后取者拿走k(1 ≤ k ≤ m)个,那么先取者再拿走m+1-k个,就会剩下(m+1)*(r-1)个,以后每次都保持这样的取法,那么先取者肯定获胜。所以,只要保持给对手留下(m+1)的倍数,就能最后获胜。

由此易得:如果 n%(m+1) !=0  也就相当于是 n = (m+1) * r + s

这种情况下 按照上述所说的方法则先手获胜。

反之如果 n%(m+1) = 0 就相当于是 n = (m+1) * r

这种情况后手按照上述方法 后手就能获胜。

看完上述介绍后,可以练习一道巴什博奕的入门题

点击打开链接

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值