题目大意:农夫John在它的许多农场探险时,他发现了许多奇异的虫洞,虫洞的特别在于虫洞是单向路径,可以让你在进入虫洞之前到达目的地,John的农场从1-N进行编号,有M条农场与农场之间的双向路径和W个虫洞。因为农夫John是一个时间旅行的狂热爱好者,他想做以下的一些事情:从某块农田开始,经过一些路径和虫洞,他想回到最开始出发的那个地点的时间之前,这样也许他就能遇见自己。如果能就输出“YES”,否则输出“NO”。
输入
第1行:一个整数F表示接下来会有F个农场说明(也可以认为是F组测试数据)。
每个农场的第1行:有3个空格分开的整数N、M和W。(1 ≤ N ≤ 500,1 ≤ M ≤ 2500,1 ≤ W ≤ 200)
第2行到第M+1行:有3个空格分开的整数(S, E, T) 描述一条从S到E的双向路径,这条路径将耗时T秒。
第M+2行到M+W+1行:有3个空格分开的整数(S, E, T) 描述一条从S到E的单向路径,它会让John回到过去T秒。
分析:要经过一圈后回到初始点的时间在出发之前,其实也就是找到一个环的,它上面的边权相加是负,如果能找到,那么走一圈以后就会回到过去,如果找不到负环,就输出“NO”,那么就直接可以用Bellman-For来判负环。
#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<cstdio>
#include<vector>
#include<cctype>
#include<cstring>
#include<utility>
#include<cstdlib>
#include<iomanip>
#include<iostream>
#include<algorithm>
#define Clear(x) memset(x,0,sizeof(x))
#define fup(i,a,b) for(int i=a;i<b;i++)
#define rfup(i,a,b) for(int i=a;i<=b;i++)
#define fdn(i,a,b) for(int i=a;i>b;i--)
#define rfdn(i,a,b) for(int i=a;i>=b;i--)
typedef long long ll;
using namespace std;
const double pi=acos(-1.0);
const int maxn = 5e2+7;
const int maxn1 = 2505;
const int inf = 0x3f3f3f3f;
int tot;
int N,M,W;
int dis[maxn];
struct Node{
int u,v,w;
}edge[maxn1<<1];
void addEdge(int u,int v,int w)
{
edge[tot].u=u;
edge[tot].v=v;
edge[tot++].w=w;
}
bool bellman_ford()
{
memset(dis,inf,sizeof(dis));
dis[1]=0;
bool flag;
rfup(i,1,N-1)
{
flag=true;
fup(j,0,tot)
{
if(dis[edge[j].v]>dis[edge[j].u]+edge[j].w)
{
dis[edge[j].v]=dis[edge[j].u]+edge[j].w;
flag=false;
}
}
if(flag) break;
}
fup(i,0,tot)
{
if(dis[edge[i].v]>dis[edge[i].u]+edge[i].w)
return true;
}
return false;
}
int main()
{
int F,S,E,T;
scanf("%d",&F);
while(F--)
{
tot=0;
scanf("%d%d%d",&N,&M,&W);
rfup(i,1,M)
{
scanf("%d%d%d",&S,&E,&T);
addEdge(S,E,T);
addEdge(E,S,T);
}
rfup(i,1,W)
{
scanf("%d%d%d",&S,&E,&T);
addEdge(S,E,-T);
}
if(bellman_ford()) printf("YES\n");
else printf("NO\n");
}
return 0;
}