prompt提示词为传统项目赋能(商城客服模块为例)

商城客服模块改造

在商城的客服模块中,通过精心设计的 Prompt 工程,可以显著提升模型的响应质量和用户体验。以下是改造 ai/aliTyqw 接口时重点体现 Prompt 工程的步骤和示例。

1. 明确 Prompt 的结构

设计 Prompt 时,确保包含足够的信息,以帮助模型理解用户的意图和上下文。这可以通过在请求中添加指令、示例或上下文信息来实现。

2. 改造后的接口实现

在改造 ai/aliTyqw 接口时,加入详细的 Prompt 设计。下面是一个示例代码,展示如何构建 Prompt。

改造后的接口代码示例

@PostMapping(value = "aliTyqw")
public ResponseEntity<ChatResponse> send(@RequestBody ChatRequest chatRequest) 
        throws NoApiKeyException, InputRequiredException {
    
    // 提取用户消息和会话上下文
    String userMessage = chatRequest.getContent();
    List<Message> messages = chatRequest.getMessages(); // 包含历史消息

    // 创建用户消息
    Message userMessageObj = Message.builder()
            .role(Role.USER.getValue())
            .content(userMessage)
            .build();

    // 将用户消息添加到历史消息中
    messages.add(userMessageObj);

    // 构建 Prompt,包含历史对话和用户消息
    StringBuilder promptBuilder = new StringBuilder();
    promptBuilder.append("你是一位智能客服助手,能够回答用户在商城的各种问题。请根据上下文和用户的提问生成回答。\n\n");

    for (Message message : messages) {
        promptBuilder.append(message.getRole()).append(": ").append(message.getContent()).append("\n");
    }

    promptBuilder.append("助手: "); // 指示模型生成助手的回答

    // 构建生成参数
    GenerationParam param = GenerationParam.builder()
            .model("qwen-turbo")
            .messages(Collections.singletonList(new Message(Role.SYSTEM.getValue(), promptBuilder.toString())))
            .resultFormat(GenerationParam.ResultFormat.MESSAGE)
            .topP(0.8)
            .apiKey(apiKey)
            .enableSearch(true)
            .build();

    // 调用模型生成响应
    GenerationResult generationResult = generation.call(param);
    
    // 构建聊天响应
    String botResponse = generationResult.getOutput().getChoices().get(0).getMessage().getContent();
    
    // 返回响应
    return ResponseEntity.ok(new ChatResponse(botResponse, messages));
}

3. Prompt 设计的关键要素

角色扮演:在 Prompt 中明确模型的角色,比如“你是一位智能客服助手”。这有助于模型理解它的任务。

上下文信息:在 Prompt 中提供历史对话,帮助模型把握对话的上下文。这包括用户的提问和之前的回复。

指示和格式:使用明确的指示词汇,如“助手:”,来引导模型生成适当格式的回答。

4. 实例化 Prompt 的示例

在实际调用接口时,Prompt 的构建是动态的。例如,如果用户询问“推荐一款手机”,则生成的 Prompt 可能如下所示:

你是一位智能客服助手,能够回答用户在商城的各种问题。请根据上下文和用户的提问生成回答。

用户: 我在寻找一款新的手机。
用户: 推荐一款手机。
助手:

5. 测试与调整

在实施过程中,务必进行多轮测试。根据用户反馈和模型的表现,调整 Prompt 的设计,如添加更多上下文、示例或调整语气,以提升响应的准确性和自然度。

6. 用户交互和反馈收集

在实现后,收集用户反馈,评估模型在不同场景下的表现。这可以帮助你进一步优化 Prompt 设计和模型调用策略。

结论

通过这种方式,你不仅可以提升客服模块的智能化程度,还能通过精细的 Prompt 工程提高模型的响应质量和用户满意度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值