商城客服模块改造
在商城的客服模块中,通过精心设计的 Prompt 工程,可以显著提升模型的响应质量和用户体验。以下是改造 ai/aliTyqw
接口时重点体现 Prompt 工程的步骤和示例。
1. 明确 Prompt 的结构
设计 Prompt 时,确保包含足够的信息,以帮助模型理解用户的意图和上下文。这可以通过在请求中添加指令、示例或上下文信息来实现。
2. 改造后的接口实现
在改造 ai/aliTyqw
接口时,加入详细的 Prompt 设计。下面是一个示例代码,展示如何构建 Prompt。
改造后的接口代码示例
@PostMapping(value = "aliTyqw")
public ResponseEntity<ChatResponse> send(@RequestBody ChatRequest chatRequest)
throws NoApiKeyException, InputRequiredException {
// 提取用户消息和会话上下文
String userMessage = chatRequest.getContent();
List<Message> messages = chatRequest.getMessages(); // 包含历史消息
// 创建用户消息
Message userMessageObj = Message.builder()
.role(Role.USER.getValue())
.content(userMessage)
.build();
// 将用户消息添加到历史消息中
messages.add(userMessageObj);
// 构建 Prompt,包含历史对话和用户消息
StringBuilder promptBuilder = new StringBuilder();
promptBuilder.append("你是一位智能客服助手,能够回答用户在商城的各种问题。请根据上下文和用户的提问生成回答。\n\n");
for (Message message : messages) {
promptBuilder.append(message.getRole()).append(": ").append(message.getContent()).append("\n");
}
promptBuilder.append("助手: "); // 指示模型生成助手的回答
// 构建生成参数
GenerationParam param = GenerationParam.builder()
.model("qwen-turbo")
.messages(Collections.singletonList(new Message(Role.SYSTEM.getValue(), promptBuilder.toString())))
.resultFormat(GenerationParam.ResultFormat.MESSAGE)
.topP(0.8)
.apiKey(apiKey)
.enableSearch(true)
.build();
// 调用模型生成响应
GenerationResult generationResult = generation.call(param);
// 构建聊天响应
String botResponse = generationResult.getOutput().getChoices().get(0).getMessage().getContent();
// 返回响应
return ResponseEntity.ok(new ChatResponse(botResponse, messages));
}
3. Prompt 设计的关键要素
角色扮演:在 Prompt 中明确模型的角色,比如“你是一位智能客服助手”。这有助于模型理解它的任务。
上下文信息:在 Prompt 中提供历史对话,帮助模型把握对话的上下文。这包括用户的提问和之前的回复。
指示和格式:使用明确的指示词汇,如“助手:”,来引导模型生成适当格式的回答。
4. 实例化 Prompt 的示例
在实际调用接口时,Prompt 的构建是动态的。例如,如果用户询问“推荐一款手机”,则生成的 Prompt 可能如下所示:
你是一位智能客服助手,能够回答用户在商城的各种问题。请根据上下文和用户的提问生成回答。
用户: 我在寻找一款新的手机。
用户: 推荐一款手机。
助手:
5. 测试与调整
在实施过程中,务必进行多轮测试。根据用户反馈和模型的表现,调整 Prompt 的设计,如添加更多上下文、示例或调整语气,以提升响应的准确性和自然度。
6. 用户交互和反馈收集
在实现后,收集用户反馈,评估模型在不同场景下的表现。这可以帮助你进一步优化 Prompt 设计和模型调用策略。
结论
通过这种方式,你不仅可以提升客服模块的智能化程度,还能通过精细的 Prompt 工程提高模型的响应质量和用户满意度。