tensorflow word2vec

tensorflow 源代码学习

自己的理解:
文章中词与词之间是存在一定的关系的,或者经常组合出现的。
词向量有两种模型:
(1)通过中间词预测两侧的词的概率 Skip-gram
(2)通过两侧词预测中间词的概率 CBoW
计算流程(以skip-gram为例):
(1)切词,并根据词频由高到低编号
(2)样本:
train_data:每次窗口移动,中间的词组成的向量,每个词是一个1*n的向量,先随机初始化
label:两侧词的向量表示
weights:
(3)模型训练
(4)词向量输出

词向量原理:

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Basic word2vec example."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import collections
import math
import os
import random
import sys
from tempfile import gettempdir
import zipfile

import numpy as np
from six.moves import urllib
from six.moves import xrange  # pylint: disable=redefined-builtin
import tensorflow as tf

from tensorflow.contrib.tensorboard.plugins import projector

data_index = 0


def word2vec_basic(log_dir):
    """Example of building, training and visualizing a word2vec model."""
    # Create the directory for TensorBoard variables if there is not.
    if not os.path.exists(log_dir):
        os.makedirs(log_dir)

    # Step 1: Download the data.
    url = 'http://mattmahoney.net/dc/'

    # pylint: disable=redefined-outer-name
    def maybe_download(filename, expected_bytes):
        """Download a file if not present, and make sure it's the right size."""
        # local_filename = os.path.join(gettempdir(), filename)
        local_filename = filename
        if not os.path.exists(local_filename):
            local_filename, _ = urllib.request.urlretrieve(url + filename,
                                                           local_filename)
        statinfo = os.stat(local_filename)
        if statinfo.st_size == expected_bytes:
            print('Found and verified', filename)
        else:
            print(statinfo.st_size)
            raise Exception('Failed to verify ' + local_filename +
                            '. Can you get to it with a browser?')
        return local_filename

    filename = maybe_download('text8.zip', 31344016)

    # Read the data into a list of strings.
    def read_data(filename):
        """Extract the first file enclosed in a zip file as a list of words."""
        with zipfile.ZipFile(filename) as f:
            data = tf.compat.as_str(f.read(f.namelist()[0])).split()
        return data

    vocabulary = read_data(filename)
    print('Data size', len(vocabulary))

    # Step 2: Build the dictionary and replace rare words with UNK token.
    vocabulary_size = 50000

    def build_dataset(words, n_words):
        """Process raw inputs into a dataset."""
        count = [['UNK', -1]]
        count.extend(collections.Counter(words).most_common(n_words - 1))
        dictionary = {}
        for word, _ in count:
            dictionary[word] = len(dictionary)
        data = []
        unk_count = 0
        for word in words:
            index = dictionary.get(word, 0)
            if index == 0:  # dictionary['UNK']
                unk_count += 1
            data.append(index)
        count[0][1] = unk_count
        reversed_dictionary = dict(zip(dictionary.values(), dictionary.keys()))
        return data, count, dictionary, reversed_dictionary

    # Filling 4 global variables:
    # data - list of codes (integers from 0 to vocabulary_size-1).
    #   This is the original text but words are replaced by their codes
    # count - map of words(strings) to count of occurrences
    # dictionary - map of words(strings) to their codes(integers)
    # reverse_dictionary - maps codes(integers) to words(strings)
    data, count, unused_dictionary, reverse_dictionary = build_dataset(
        vocabulary, vocabulary_size)
    del vocabulary  # Hint to reduce memory.
    print('Most common words (+UNK)', count[:5])
    print('Sample data', data[:10], [reverse_dictionary[i] for i in data[:10]])

    # Step 3: Function to generate a training batch for the skip-gram model.
    def generate_batch(batch_size, num_skips, skip_window):
        global data_index
        assert batch_size % num_skips == 0
        assert num_skips <= 2 * skip_window
        batch = np.ndarray(shape=(batch_size), dtype=np.int32)
        labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32)
        span = 2 * skip_window + 1  # [ skip_window target skip_window ]
        buffer = collections.deque(maxlen=span)  # pylint: disable=redefined-builtin
        if data_index + span > len(data):
            data_index = 0
        buffer.extend(data[data_index:data_index + span])
        data_index += span
        for i in range(batch_size // num_skips):
            context_words = [w for w in range(span) if w != skip_window]
            words_to_use = random.sample(context_words, num_skips)
            for j, context_word in enumerate(words_to_use):
                batch[i * num_skips + j] = buffer[skip_window]
                labels[i * num_skips + j, 0] = buffer[context_word]
            if data_index == len(data):
                buffer.extend(data[0:span])
                data_index = span
            else:
                buffer.append(data[data_index])
                data_index += 1
        # Backtrack a little bit to avoid skipping words in the end of a batch
        data_index = (data_index + len(data) - span) % len(data)
        return batch, labels

    batch, labels = generate_batch(batch_size=8, num_skips=2, skip_window=1)
    for i in range(8):
        print(batch[i], reverse_dictionary[batch[i]], '->', labels[i, 0],
              reverse_dictionary[labels[i, 0]])

    # Step 4: Build and train a skip-gram model.

    batch_size = 128
    embedding_size = 128  # Dimension of the embedding vector.
    skip_window = 1  # How many words to consider left and right.
    num_skips = 2  # How many times to reuse an input to generate a label.
    num_sampled = 64  # Number of negative examples to sample.

    # We pick a random validation set to sample nearest neighbors. Here we limit
    # the validation samples to the words that have a low numeric ID, which by
    # construction are also the most frequent. These 3 variables are used only for
    # displaying model accuracy, they don't affect calculation.
    valid_size = 16  # Random set of words to evaluate similarity on.
    valid_window = 100  # Only pick dev samples in the head of the distribution.
    valid_examples = np.random.choice(valid_window, valid_size, replace=False)

    graph = tf.Graph()

    with graph.as_default():

        # Input data.
        with tf.name_scope('inputs'):
            train_inputs = tf.placeholder(tf.int32, shape=[batch_size])
            train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])
            valid_dataset = tf.constant(valid_examples, dtype=tf.int32)

        # Ops and variables pinned to the CPU because of missing GPU implementation
        with tf.device('/cpu:0'):
            # Look up embeddings for inputs.
            with tf.name_scope('embeddings'):
                embeddings = tf.Variable(
                    tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
                embed = tf.nn.embedding_lookup(embeddings, train_inputs)

            # Construct the variables for the NCE loss
            with tf.name_scope('weights'):
                nce_weights = tf.Variable(
                    tf.truncated_normal([vocabulary_size, embedding_size],
                                        stddev=1.0 / math.sqrt(embedding_size)))
            with tf.name_scope('biases'):
                nce_biases = tf.Variable(tf.zeros([vocabulary_size]))

        # Compute the average NCE loss for the batch.
        # tf.nce_loss automatically draws a new sample of the negative labels each
        # time we evaluate the loss.
        # Explanation of the meaning of NCE loss:
        #   http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
        with tf.name_scope('loss'):
            loss = tf.reduce_mean(
                tf.nn.nce_loss(
                    weights=nce_weights,
                    biases=nce_biases,
                    labels=train_labels,
                    inputs=embed,
                    num_sampled=num_sampled,
                    num_classes=vocabulary_size))

        # Add the loss value as a scalar to summary.
        tf.summary.scalar('loss', loss)

        # Construct the SGD optimizer using a learning rate of 1.0.
        with tf.name_scope('optimizer'):
            optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss)

        # Compute the cosine similarity between minibatch examples and all
        # embeddings.
        norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True))
        normalized_embeddings = embeddings / norm
        valid_embeddings = tf.nn.embedding_lookup(normalized_embeddings,
                                                  valid_dataset)
        similarity = tf.matmul(
            valid_embeddings, normalized_embeddings, transpose_b=True)

        # Merge all summaries.
        merged = tf.summary.merge_all()

        # Add variable initializer.
        init = tf.global_variables_initializer()

        # Create a saver.
        saver = tf.train.Saver()

    # Step 5: Begin training.
    num_steps = 100001

    with tf.Session(graph=graph) as session:
        # Open a writer to write summaries.
        writer = tf.summary.FileWriter(log_dir, session.graph)

        # We must initialize all variables before we use them.
        init.run()
        print('Initialized')

        average_loss = 0
        for step in xrange(num_steps):
            batch_inputs, batch_labels = generate_batch(batch_size, num_skips,
                                                        skip_window)
            feed_dict = {train_inputs: batch_inputs, train_labels: batch_labels}

            # Define metadata variable.
            run_metadata = tf.RunMetadata()

            # We perform one update step by evaluating the optimizer op (including it
            # in the list of returned values for session.run()
            # Also, evaluate the merged op to get all summaries from the returned
            # "summary" variable. Feed metadata variable to session for visualizing
            # the graph in TensorBoard.
            _, summary, loss_val = session.run([optimizer, merged, loss],
                                               feed_dict=feed_dict,
                                               run_metadata=run_metadata)
            average_loss += loss_val

            # Add returned summaries to writer in each step.
            writer.add_summary(summary, step)
            # Add metadata to visualize the graph for the last run.
            if step == (num_steps - 1):
                writer.add_run_metadata(run_metadata, 'step%d' % step)

            if step % 2000 == 0:
                if step > 0:
                    average_loss /= 2000
                # The average loss is an estimate of the loss over the last 2000
                # batches.
                print('Average loss at step ', step, ': ', average_loss)
                average_loss = 0

            # Note that this is expensive (~20% slowdown if computed every 500 steps)
            if step % 10000 == 0:
                sim = similarity.eval()
                for i in xrange(valid_size):
                    valid_word = reverse_dictionary[valid_examples[i]]
                    top_k = 8  # number of nearest neighbors
                    nearest = (-sim[i, :]).argsort()[1:top_k + 1]
                    log_str = 'Nearest to %s:' % valid_word
                    for k in xrange(top_k):
                        close_word = reverse_dictionary[nearest[k]]
                        log_str = '%s %s,' % (log_str, close_word)
                    print(log_str)
        final_embeddings = normalized_embeddings.eval()

        # Write corresponding labels for the embeddings.
        with open(log_dir + '/metadata.tsv', 'w') as f:
            for i in xrange(vocabulary_size):
                f.write(reverse_dictionary[i] + '\n')

        # Save the model for checkpoints.
        saver.save(session, os.path.join(log_dir, 'model.ckpt'))

        # Create a configuration for visualizing embeddings with the labels in
        # TensorBoard.
        config = projector.ProjectorConfig()
        embedding_conf = config.embeddings.add()
        embedding_conf.tensor_name = embeddings.name
        embedding_conf.metadata_path = os.path.join(log_dir, 'metadata.tsv')
        projector.visualize_embeddings(writer, config)

    writer.close()

    # Step 6: Visualize the embeddings.

    # pylint: disable=missing-docstring
    # Function to draw visualization of distance between embeddings.
    def plot_with_labels(low_dim_embs, labels, filename):
        assert low_dim_embs.shape[0] >= len(labels), 'More labels than embeddings'
        plt.figure(figsize=(18, 18))  # in inches
        for i, label in enumerate(labels):
            x, y = low_dim_embs[i, :]
            plt.scatter(x, y)
            plt.annotate(
                label,
                xy=(x, y),
                xytext=(5, 2),
                textcoords='offset points',
                ha='right',
                va='bottom')

        plt.savefig(filename)

    try:
        # pylint: disable=g-import-not-at-top
        from sklearn.manifold import TSNE
        import matplotlib.pyplot as plt

        tsne = TSNE(
            perplexity=30, n_components=2, init='pca', n_iter=5000, method='exact')
        plot_only = 500
        low_dim_embs = tsne.fit_transform(final_embeddings[:plot_only, :])
        labels = [reverse_dictionary[i] for i in xrange(plot_only)]
        plot_with_labels(low_dim_embs, labels, os.path.join(gettempdir(),
                                                            'tsne.png'))

    except ImportError as ex:
        print('Please install sklearn, matplotlib, and scipy to show embeddings.')
        print(ex)


# All functionality is run after tf.compat.v1.app.run() (b/122547914). This
# could be split up but the methods are laid sequentially with their usage for
# clarity.
def main(unused_argv):
    # Give a folder path as an argument with '--log_dir' to save
    # TensorBoard summaries. Default is a log folder in current directory.
    current_path = os.path.dirname(os.path.realpath(sys.argv[0]))

    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--log_dir',
        type=str,
        default=os.path.join(current_path, 'log'),
        help='The log directory for TensorBoard summaries.')
    flags, unused_flags = parser.parse_known_args()
    word2vec_basic(flags.log_dir)


if __name__ == '__main__':
    tf.app.run()
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值