图像修复论文阅读Image Inpainting with Learnable Bidirectional Attention Maps
Image Inpainting with Learnable Bidirectional Attention MapsAbstract大多数基于卷积网络(CNN)的修复方法采用标准的卷积方法对有效像素和空洞进行不可区分的处理,使其仅限于处理不规则的空洞,更容易产生色差和模糊的修复结果。部分卷积被提出用来解决这一问题,但它采用手工特征重归一化,并且只考虑前向掩码更新。本文提出了一种可学习的注意力图模块,用于端到端的特征重整化和掩码更新学习,能够有效地适应不规则孔洞和卷积层的传播。此外,引入了可学习的反向
原创
2021-05-19 18:53:47 ·
1166 阅读 ·
0 评论