分布式事务

分布式事务


内容参考 《从Paxos 到 Zookeeper 分布式一致性原理与实践

 

目录

分布式事务

CAP

C:一致性(Consistenct)

A:可用性 (Availability)

P:分区容错性 (Partition tolerance)

BASE

基本可用 (Basically Availble)

软状态 (Soft state)

最终一致性 (Eventually consistent)


 

在单机系统中,数据库的事务有四个特性,简称为 ACID,分别是原子性、一致性、隔离性、持久性。

而在分布式系统中,显然 ACID 并不适用于多台主机之间的数据库的事务的特性,因此便有了 CAPBASE的由来:

 

CAP

一个分布式系统不可能同时满足 一致性(C:Consistenct)可用性(A:Availability)分区容错性 (P:Partition tolerance) 这三项基本需求,最多只能同时满足其中的两项。

C:一致性(Consistenct)

在分布式环境中,一致性是指数据在多个副本之间是否能保持一致的特性。在一致性的需求下。当一个系统在数据一致的状态下执行更新后,应该能保证系统的数据仍然处于一致的状态。

对于一个将数据副本分布在不同分布式节点上的系统来说如果对第一个节点的数据进行了更新操作并且更新成功后,却没有使得第二个节点上的数据得到相应的更新,于是在对第二个节点的数据进行读取操作时,获取的仍然是老数据(脏读),这就是典型的分布式数据不一致的情况。在分布式系统中秒如果能左到针对一个数据项的更新操作执行成功后,所有的用户都可以取到其最新的值,那么这样的系统就被认为具有强一致性(严格的一致性)

A:可用性 (Availability)

 系统提供的服务必须一直处于可用的状态,对于用户的每一个操作请求总是能够在有限的时间内返回结果

有限时间内:对于用户的一个操作请求,系统必须能够在指定的时间(即响应时间)内返回对应的处理结果,如果超过了这个时间范围,那么系统就被认为是不可用的。“有限的时间内”是一个系统设计之初就设定好的系统运行指标,通常不同的系统之间会有很大的不同。

返回结果:是可用性的另一个非常重要的指标,它要求系统在完成对用户请求的处理后,返回一个正常得响应结果。正常的响应结果能够明确的反映出对请求的处理结果,即成功或失败,而不是一个让用户感到困惑的返回结果。

P:分区容错性 (Partition tolerance)

分区容错性约束了一个分布式系统需要具有如下特性:

分布式系统在遇到任何网络分区故障的时候,仍然需要能够保证对外提供满足一致性和可用性的服务,除非是整个网络环境都发生了故障。(网络分区:主机孤立)

 

放弃定理说明
P(Partition tolerance)

如果希望能够避免系统出现分区容错性问题,一种较为简单的做法是将所有的数据(与事务相关的数据)都放在一个分布式节点上。这样虽然无法100%保证系统不会出错,但至少不会碰到由于网络分区带来的负面影响。但同时需要注意的是,放弃P的同时也就放弃了系统的课拓展性(放弃多个机器,变成单机)

A(Availability)相对于放弃“P”来说,放弃可用性正好相反,其做法是一旦系统遇到网络分区或者其他故障的时候,那么收到影响的服务需要等待一定的时间,因此在等待期间,系统无法对外提供正常得服务,即不可用
C(Consistency)

这里所说的放弃一致性,并不是完全不需要数据一致性,如果真是这样的话,那么系统的数据都是没有意义的,整个系统也是没有价值的。

事实上,放弃一致性指的是放弃数据的强一致性,而包留数据的最终一致性。这样的系统无法保证数据保持实时的一致性,但是能够承诺的是,数据最终会达到一个一致的状态。这就引入了一个时间窗口的概念,具体多久能够到达数据一致性取决于系统的设计,主要包括数据副本在不同节点之间的复制时间长短

事实上,作为一个分布式系统,P肯定是不能缺少的,不然就不叫分布式系统了,人们还是主要在C、A之中寻找平衡。

 

 

BASE

BASE 是由 Basically Available(基本可用)Soft state(软状态)Eventually consistent(最终一致性) 三个短语的简写。

BASE 是对 CAP 中一致性和可用性权衡的结果,其来源于对大规模互联网系统分布式实践的总结,是基于 CAP 定义逐步演化而来的,其核心思想是即使无法做到 强一致性(Strong consistenct),但每个应用都可以根据自身的业务特点,采用适当的方式来使系统达到最终一致性(Eventual consistency)

基本可用 (Basically Availble)

分布式系统在出现不可预知故障的时候,允许损失部分可用性---但请注意,这绝不等于系统不可用:

  1. 响应时间上的损失
  2. 功能上的损失

软状态 (Soft state)

弱状态也成为软状态,和硬状态相对,是指允许系统中的数据存在中间状态,并认为该中间状态的存在不会影响系统的整体可用性,即允许系统在不同节点的数据副本置键进行数据同步的过程存在延时。

最终一致性 (Eventually consistent)

强调的是系统中所有的数据副本,在经过一段时间的同步后,最终能够达到一个一致的状态。因此,最终一致性的本质是需要系统保证最终数据能够达到一直,而不需要实时保证系统数据的强一致性。

在实际工程中,最终一致性存在5个变种

1.因果一致性 (Causal consistency)

如果进程A在更新完某个数据项后通知了进程B,呢么进程B之后对该数据项的访问都应该能够获取到进程A更新后的最新值,并且如果进程B要对该数据项进行更新操作的话,务必基于进程A更新后的最新值,即不能发生丢失更新情况。与此同时,与进程A无因果关系的进程C的数据访问则没有这样的限制。

2.读已之所写 (Read your Writes)

读已之所写指进程A更新一个数据项之后,它自己总是能够访问到更新过的最新值,而不会看到旧值。也就是说,对于单个数据获取者来说,其读取到的数据,一定不会比自己上次写入的值旧。因此,读已之所写也可以看作是一种特殊的因果一致性。

3.会话一致性 (Session consistency)

对系统数据的访问过程框定在一个会话当中:系统能保证在同一个有效的会话中实现“读已之所写”的一致性,也就是说,执行更能操作之后,客户端能够在同一个会话中读取到该数据项的最新值。

4.单调读一致性 (Monotonic read consistency)

如果一个进程荣系统中读取出一个数据项的某个值后,那么系统对于该进程的后续的任何数据访问都不应该返回更旧的值

5.单调写一致性 (Monotonic write consistency)

一个系统需要能够保证来自同一个进程的写操作被顺序地执行

 

 
©️2020 CSDN 皮肤主题: 黑客帝国 设计师:上身试试 返回首页