- 博客(4)
- 资源 (1)
- 问答 (1)
- 收藏
- 关注
原创 乘法逆元
上一篇:浅谈DFS剪枝技巧及其应用(a+b)%p=(a%p+b%p) %p(a-b)%p=(a%p-b%p) %p(a*b)%p=(a%p*b%p) %p如果有ab≡1(mod p)ab≡1(mod p),则称b是mod p意义下a的乘法逆元。记或(定义了剩余系中的除法)求逆元的方法:1.扩展欧几里得ax≡1(modp)可以等价的转化为ax−py=1然后套用exgcd...
2020-05-20 19:30:32 805
原创 欧拉函数
欧拉函数:用 φ(n)\varphi(n)φ(n)来表示,含义是111至nnn之间与nnn互质的数的个数。特别的,φ(1)=1\varphi(1)=1φ(1)=1,当nnn为质数时,φ(n)=n−1\varphi(n)=n-1φ(n)=n−1欧拉函数是积性函数:若 gcd(a,b)=1gcd(a,b)=1gcd(a,b)=1 ,φ(a)∗φ(b)=φ(a∗b)\varphi(a)*\varp...
2020-01-18 07:41:04 244
原创 扩展欧几里得
欧几里得法(辗转相除法):int gcd(int a,int b){ if(b==0)return a; return gcd(b,a%b);}裴蜀定理:对于有解,应满足。扩展欧几里得:对于可得:故可用类似欧几里得的的方法,求出该方程的解int exgcd(int a,int b,int &x,int &y){ if(b==...
2019-12-07 16:58:35 105
请问C++头文件每个的含义?
2019-03-14
TA创建的收藏夹 TA关注的收藏夹
TA关注的人