题目:
一种新型的激光炸弹,可以摧毁一个边长为R的正方形内的所有的目标。现在地图上有n(N<=10000)个目标,用整数Xi,Yi(其值在[0,5000])表示目标在地图上的位置,每个目标都有一个价值。激光炸弹的投放是通过卫星定位的,但其有一个缺点,就是其爆破范围,即那个边长为R的正方形的边必须和x,y轴平行。若目标位于爆破正方形的边上,该目标将不会被摧毁。
Input
输入文件的第一行为正整数n和正整数R,接下来的n行每行有3个正整数,分别表示xi,yi,vi
Output输出文件仅有一个正整数,表示一颗炸弹最多能炸掉地图上总价值为多少的目标(结果不会超过32767)。
分析:
本题是前缀和的应用
将每一个点看做方块的中心,方块的坐标编号从1到5001,在输入xi,yi即点的坐标的时候,都分别++,使得符合1~5001的范围
对于s(i,j)是方块(1,1)->(i,j)的区域权值和;还有a(i,j)是坐标为(i,j)处的权值,没有物品则为0
s(i,j)=s(i-1,j)+s(i,j-1)-s(i-1,j-1)+a(i,j)
对于一个右上角为(i,j)的边长为r的方块来说,它的权值和可以表示为:
s(i,j)-s(i,j-r)-s(i-r,j)+s(i-r,j-r)
求s(i,j)的顺序就是动态规划的状态转移方法
代码:
#include<iostream>
#include<cstring>
using namespace std;
int s[5010][5010];
short a[5010][5010];
int main(){
memset(s,0,sizeof(s));
memset(a,0,sizeof(a));
int n,r;
int A,B,v;
cin>>n>>r;
for(int i=1;i<=n;i++){
cin>>A>>B>>v;
a[++A][++B]=v;
}
for(int i=1;i<=5001;i++)
for(int j=1;j<=5001;j++){
s[i][j]=s[i-1][j]+s[i][j-1]-s[i-1][j-1]+a[i][j];
}
int Max=-1;
for(int i=r;i<=5001;i++)
for(int j=r;j<=5001;j++){
if(Max<s[i][j]-s[i][j-r]-s[i-r][j]+s[i-r][j-r])
Max=s[i][j]-s[i][j-r]-s[i-r][j]+s[i-r][j-r];
}
cout<<Max;
return 0;
}