高数概率线代
emm
Rqff
这个作者很懒,什么都没留下…
展开
-
点估计、区间估计
转载 2020-06-15 15:31:54 · 450 阅读 · 0 评论 -
高斯积分(概率积分)以及它与伽马函数之间的关系
高斯积分(英语:Gaussian integral)有时也被称为概率积分,是高斯函数(e−x2)在整个实数线上的积分。它是依德国数学家兼物理学家卡尔·弗里德里希·高斯之姓氏所命名。∫−∞∞e−x2dx=π{\displaystyle \int _{-\infty }^{\infty }e^{-x^{2}}dx={\sqrt {\pi }}}∫−∞∞e−x2dx=π尽管误差函数不存在初等函数,但可以通过Risch算法证明,高斯积分可以通过多元微积分方法分析求解。下面这个不定积分∫e−x2 dx,{\转载 2020-06-10 21:28:10 · 19488 阅读 · 0 评论 -
二元泰勒展开
转载 2020-06-09 15:16:17 · 1522 阅读 · 0 评论 -
常用数学公式
牛顿二项式定理原创 2020-06-03 19:04:56 · 686 阅读 · 0 评论 -
伽马函数、欧拉函数、正态分布
一、伽马函数伽玛函数(Gamma函数),也叫欧拉第二积分,是阶乘函数在实数与复数上扩展的一类函数。该函数在分析学、概率论、偏微分方程和组合数学中有重要的应用。与之有密切联系的函数是贝塔函数,也叫第一类欧拉积分,可以用来快速计算同伽马函数形式相类似的积分。性质Γ(x+1)=xΓ(x)\Gamma(x+1) =x\Gamma(x)Γ(x+1)=xΓ(x)Γ(12)=π\Gamma(\frac{1}{2}) = \sqrt{\pi}Γ(21)=πΓ(1)=1\Gamma(1) = 1Γ(1)原创 2020-06-01 18:57:11 · 5674 阅读 · 0 评论 -
大数定律和中心极限定理
大学概率论大数定律和中心极限定理皮毛小结一.依概率收敛它的对立事件,概率为1二、大数定律通俗的说,切比雪夫大数定律:均值依概率收敛到均值的数学期望。满足三个条件:相互独立,方差存在,且有上界。通俗的理解:在抛硬币中,抛出的次数趋向于无穷大时(n趋向于无穷大),正反面出现的概率是相同的。条件:独立同分布,期望存在。要与切比雪夫大数定律的条件区分开。大数定律运用了类似我们用概率代替频率的思想,本质上说明了,在样本足够多的情况下,样本是可以刻画总体的数字特征的,也是数理统计的前身与基础原创 2020-06-01 10:25:17 · 3875 阅读 · 0 评论 -
幂级数展开常用公式
转载 2020-05-29 17:12:29 · 74533 阅读 · 1 评论