数据归一化

数据归一化是确保模型准确性的重要步骤,尤其是当数据具有不同单位或量级时。均值方差归一化和最值归一化是常见的方法,其中均值方差归一化更常用。最值归一化可能存在问题,如在极端值情况下可能导致数值过小,影响模型训练。通过对数据进行归一化,可以消除单位差异,确保所有特征在相同尺度上,提高模型的预测能力。
摘要由CSDN通过智能技术生成

用于输送给模型的数据是要经过处理的,这样得出的模型才能越来越准确,这里记录一下数据归一化的处理

为什么要数据归一化

比如我们拿鸢尾花数据来讲,如果我们把萼片的宽度单位换成米,长度换成是毫米,那么通过KNN算法来计算,萼片的宽度数值就会小到可以忽略不计,但是萼片的长度就对整体数据影响很大,这就对后面的结果影响很大。所以这个问题也说明,整体的数据需要保持同一个单位量级,不过现实中我们很多特征是代表不同的事物,很难有一个统一的单位来表示,这里就要引入数据归一化概念

数值归一化,就是将数据统一映射到同一个维度上,这样就不会被使用不同单位所影响

数值归一化有最值归一化和均值方差归一化,比较通用的是均值方差归一化

就是矩阵每一个数值减去平均值的差除以方差,得出的数值组成一个矩阵,就是数值归一化

 

最值归一化,从公式也可以看出,这个方式是有缺陷的,比如我们要统计预测一组关于年龄和收入的数据,然后我们拿到一组数据,这时候发现,有些人很年轻,但是赚的钱贼多,最大值和最小值相距很大,这就导致下面公式中,除数会很大,但

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值