一些字符串匹配的算法

c++版本

库函数:

class Solution {
class Solution {
public:
    int strStr(string haystack, string needle) {
        if(needle.empty())
            return 0;
        int pos=haystack.find(needle);
        return pos;
    }
};

暴力破解:

class Solution {
public:
    int strStr(string haystack, string needle) {
        if(needle.empty())
            return 0;
        
        int i=0,j=0;
        while(haystack[i]!='\0'&&needle[j]!='\0')
        {
            if(haystack[i]==needle[j])
            {
                i++;
                j++;
            }
            else
            {
                i=i-j+1;
                j=0;
            }
        }
        if(needle[j]=='\0')
            return i-j;
        
        return -1;
    }
};

kmp:

class Solution {
public:
    vector<int> getnext(string str)
        {
            int len=str.size();
            vector<int> next;
            next.push_back(-1);//next数组初值为-1
            int j=0,k=-1;
            while(j<len-1)
            {
                if(k==-1||str[j]==str[k])//str[j]后缀 str[k]前缀
                {
                    j++;
                    k++;
                    next.push_back(k);
                }
                else
                {
                    k=next[k];
                }
            }
            return next;
        }
    int strStr(string haystack, string needle) {
        if(needle.empty())
            return 0;
        
        int i=0;//源串
        int j=0;//子串
        int len1=haystack.size();
        int len2=needle.size();
        vector<int> next;
        next=getnext(needle);
        while((i<len1)&&(j<len2))
        {
            if((j==-1)||(haystack[i]==needle[j]))
            {
                i++;
                j++;
            }
            else
            {
                j=next[j];//获取下一次匹配的位置
            }
        }
        if(j==len2)
            return i-j;
        
        return -1;
    }
};

BM算法 最差复杂度O(m+n),最佳O(n)

class Solution {
public:
    void get_bmB(string& T,vector<int>& bmB)//坏字符
    {
        int tlen=T.size();
        for(int i=0;i<256;i++)//不匹配直接移动子串
        {
            bmB.push_back(tlen);
        }
        for(int i=0;i<tlen-1;i++)//靠右原则
        {
            bmB[T[i]]=tlen-i-1;
        }
    }
    
    void get_suff(string& T,vector<int>& suff)
    {
        int tlen=T.size();
        int k;
        for(int i=tlen-2;i>=0;i--)
        {
            k=i;
            while(k>=0&&T[k]==T[tlen-1-i+k])
                k--;
            suff[i]=i-k;
        }
    }
    
    void get_bmG(string& T,vector<int>& bmG)//好后缀
    {
        int i,j;
        int tlen=T.size();
        vector<int> suff(tlen+1,0);
        get_suff(T,suff);//suff存储子串的最长匹配长度
        //初始化 当没有好后缀也没有公共前缀时
        for(i=0;i<tlen;i++)
            bmG[i]=tlen;
        //没有好后缀 有公共前缀 调用suff 但是要右移一位 类似KMP里的next数组
        for(i=tlen-1;i>=0;i--)
            if(suff[i]==i+1)
                for(j=0;j<tlen-1;j++)
                    if(bmG[j]==tlen)//保证每个位置不会重复修改
                        bmG[j]=tlen-1-i;
        //有好后缀 有公共前缀
        for(i=0;i<tlen-1;i++)
            bmG[tlen-1-suff[i]]=tlen-1-i;//移动距离
    }
    
    int strStr(string haystack, string needle) {
        
        int i=0;
        int j=0;
        int tlen=needle.size();
        int slen=haystack.size();
        
        vector<int> bmG(tlen,0);
        vector<int> bmB;
        get_bmB(needle,bmB);
        get_bmG(needle,bmG);
        
        while(i<=slen-tlen)
        {
            for(j=tlen-1;j>-1&&haystack[i+j]==needle[j];j--);
            if(j==(-1))
                return i;
            i+=max(bmG[j],bmB[haystack[i+j]]-(tlen-1-j));
        }
        return -1;
    }
};

sunday算法 最坏O(M+N)平均O(n)

class Solution {
public:
    int strStr(string haystack, string needle) {
        if(needle.empty())
            return 0;
        
        int slen=haystack.size();
        int tlen=needle.size();
        int i=0,j=0;//i指向源串首位 j指向子串首位
        int k;
        int m=tlen;//第一次匹配时 源串中参与匹配的元素的下一位
        
        for(;i<slen;)
        {
            if(haystack[i]!=needle[j])
            {
                for(k=tlen-1;k>=0;k--)//遍历查找此时子串与源串[i+tlen+1]相等的最右位置
                {
                    if(needle[k]==haystack[m])
                        break;
                }
                i=m-k;//i为下一次匹配源串开始首位 Sunday算法核心:最大限度跳过相同元素
                j=0;//j依然为子串首位
                m=i+tlen;//m为下一次参与匹配的源串最后一位元素的下一位
                if(m>slen)//当下一次参与匹配的源串字数的最后一位的下一位超过源串长度时
                    return -1;
            }
            else
            {
                if(j==tlen-1)//若j为子串末位 匹配成功 返回源串此时匹配首位
                    return i-j;
                i++;
                j++;
            }
        }
        return -1;//当超过源串长度时 
    }
};

版权来自力扣的2227 若有侵权请联系我删除仅做学习用

以下是对提供的参考资料的总结,按照要求结构化多个要点分条输出: 4G/5G无线网络优化与网规案例分析: NSA站点下终端掉4G问题:部分用户反馈NSA终端频繁掉4G,主要因终端主动发起SCGfail导致。分析显示,在信号较好的环境下,终端可能因节能、过热保护等原因主动释放连接。解决方案建议终端侧进行分析处理,尝试关闭节电开关等。 RSSI算法识别天馈遮挡:通过计算RSSI平均值及差值识别天馈遮挡,差值大于3dB则认定有遮挡。不同设备分组规则不同,如64T和32T。此方法可有效帮助现场人员识别因环境变化引起的网络问题。 5G 160M组网小区CA不生效:某5G站点开启100M+60M CA功能后,测试发现UE无法正常使用CA功能。问题原因在于CA频点集标识配置错误,修正后测试正常。 5G网络优化与策略: CCE映射方式优化:针对诺基亚站点覆盖农村区域,通过优化CCE资源映射方式(交织、非交织),提升RRC连接建立成功率和无线接通率。非交织方式相比交织方式有显著提升。 5G AAU两扇区组网:与三扇区组网相比,AAU两扇区组网在RSRP、SINR、下载速率和上传速率上表现不同,需根据具体场景选择适合的组网方式。 5G语音解决方案:包括沿用4G语音解决方案、EPS Fallback方案和VoNR方案。不同方案适用于不同的5G组网策略,如NSA和SA,并影响语音连续性和网络覆盖。 4G网络优化与资源利用: 4G室分设备利旧:面对4G网络投资压减与资源需求矛盾,提出利旧多维度调优策略,包括资源整合、统筹调配既有资源,以满足新增需求和提质增效。 宏站RRU设备1托N射灯:针对5G深度覆盖需求,研究使用宏站AAU结合1托N射灯方案,快速便捷地开通5G站点,提升深度覆盖能力。 基站与流程管理: 爱立信LTE基站邻区添加流程:未提供具体内容,但通常涉及邻区规划、参数配置、测试验证等步骤,以确保基站间顺畅切换和覆盖连续性。 网络规划与策略: 新高铁跨海大桥覆盖方案试点:虽未提供详细内容,但可推测涉及高铁跨海大桥区域的4G/5G网络覆盖规划,需考虑信号穿透、移动性管理、网络容量等因素。 总结: 提供的参考资料涵盖了4G/5G无线网络优化、网规案例分析、网络优化策略、资源利用、基站管理等多个方面。 通过具体案例分析,展示了无线网络优化中的常见问题及解决方案,如NSA终端掉4G、RSSI识别天馈遮挡、CA不生效等。 强调了5G网络优化与策略的重要性,包括CCE映射方式优化、5G语音解决方案、AAU扇区组网选择等。 提出了4G网络优化与资源利用的策略,如室分设备利旧、宏站RRU设备1托N射灯等。 基站与流程管理方面,提到了爱立信LTE基站邻区添加流程,但未给出具体细节。 新高铁跨海大桥覆盖方案试点展示了特殊场景下的网络规划需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值