2019.02.19 T3无区间的排列 interval 题解【DP】

题意:

在这里插入图片描述

思路:

(题外话:发现自己连暴力都码不出来。弃疗~)
对于一个长度为 n n n的排列,如果它不是无区间排列,就是有区间排列。
所以我们可以将答案转化为: n ! − n!- n!有区间排列的数量。
那么现在的问题就是:如何不重不漏的求出有区间排列的数量。

我们不妨想一想,所谓区间有哪些性质(以下所说的区间都是在某一个排列中的区间)。
定义一个区间为最大区间,当且仅当这个区间不在一个更大的区间(除了整个排列)的内部,即除了整个排列,没有区间将最大区间包围。
如果两个区间相交了,那么它们的并集也一定是一个区间。
如: ( 3 , 2 , 1 , 4 , 5 , 7 , 6 ) (3,2,1,4,5,7,6) (3,2,1,4,5,7,6)中区间 ( 3 , 2 , 1 , 4 ) (3,2,1,4) (3,2,1,4)和区间 ( 4 , 5 ) (4,5) (4,5)有交集 ( 4 ) (4) (4),所以 ( 3 , 2 , 1 , 4 , 5 ) (3,2,1,4,5) (3,2,1,4,5)也是一个区间。
再比如: ( 2 , 1 , 3 , 4 ) (2,1,3,4) (2,1,3,4)中区间 ( 2 , 1 , 3 ) (2,1,3) (2,1,3)和区间 ( 3 , 4 ) (3,4) (3,4)有交集 ( 3 ) (3) (3),所以 ( 2 , 1 , 3 , 4 ) (2,1,3,4) (2,1,3,4)也是一个区间,同时, ( 2 , 1 , 3 , 4 ) (2,1,3,4) (2,1,3,4)是整个排列。
也就是说,一个有区间排列中的最大区间一般不会相交,否则要么它不是最大区间(因为这两个区间可以合并成新的更大的一个区间,它们在更大的区间内部),要么它们合并起来是整个排列。

我们再想一想,有区间排列有什么性质。
以下所讲的区间与题目中的区间略有差别,我们将单独的一个数也称做一个区间。
不难发现,一个有区间的排列最多由 n − 1 n-1 n1个最大区间并列,最少由 2 2 2个最大区间并列。
所以,我们想要知道有区间排列的数量,可以通过枚举该排列由多少个最大区间并列而成。
如: ( 2 , 1 , 4 , 3 ) (2,1,4,3) (2,1,4,3) ( 2 , 1 ) ( 4 , 3 ) (2,1)(4,3) (2,1)(4,3)这两个最大区间并列而成。
( 2 , 5 , 1 , 3 , 4 ) (2,5,1,3,4) (2,5,1,3,4) ( 2 ) ( 5 ) ( 1 ) ( 3 , 4 ) (2)(5)(1)(3,4) (2)(5)(1)(3,4)这四个最大区间并列而成。
但对于 ( 1 , 2 , 3 , 4 ) (1,2,3,4) (1,2,3,4)而言,我们似乎可以在中间任何一个位置将它分成两个区间(或者说:包含 1 1 1的最大区间 ( 1 , 2 , 3 ) (1,2,3) (1,2,3)和包含 4 4 4的最大区间 ( 2 , 3 , 4 ) (2,3,4) (2,3,4)相交了),再比如 ( 2 , 1 , 3 , 4 ) (2,1,3,4) (2,1,3,4)由最大区间 ( 2 , 1 , 3 ) (2,1,3) (2,1,3)和最大区间 ( 3 , 4 ) (3,4) (3,4)相交而成。

回到题目中来。
定义: d p [ n ] dp[n] dp[n]表示长度为 n n n的无区间排列的数量。

如果该有区间排列由 k ( k ≥ 3 ) k(k \ge 3) k(k3)个最大区间并列而成,我们该如何保证并列的一定是最大区间?
这里直接给出结论,保证并列的一定是最大区间
&lt; = &gt; &lt;=&gt; <=>将有区间排列中的最大区间按区间内元素值的相对大小编号后,最大区间的标号组成的新的排列是无区间排列。
如: ( 2 , 5 , 1 , 3 , 4 ) (2,5,1,3,4) (2,5,1,3,4) ( 2 ) ( 5 ) ( 1 ) ( 3 , 4 ) (2)(5)(1)(3,4) (2)(5)(1)(3,4)这四个最大区间并列而成,而这四个最大区间相对大小编号 ( 2 , 4 , 1 , 3 ) (2,4,1,3) (2,4,1,3)是无区间排列。
怎么计算呢?
定义: B [ i ] [ j ] B[i][j] B[i][j]表示长度为 j j j的排列被划分成 i i i个区间的数量;
即: , B [ 0 ] [ 0 ] = 1 , B [ i ] [ j ] = ∑ k = 1 j ( B [ i − 1 ] [ j − k ] ∗ k ! ) ,B[0][0]=1,B[i][j]=\sum_{k=1}^j (B[i-1][j-k]*k!) ,B[0][0]=1B[i][j]=k=1j(B[i1][jk]k!)
所以,若长度为 n n n的有区间排列由 k ( k ≥ 3 ) k(k \ge 3) k(k3)个最大区间并列而成,那么它的数量为:
∑ k = 3 n − 1 B [ k ] [ n ] ∗ d p [ k ] \sum_{k=3}^{n-1}B[k][n]*dp[k] k=3n1B[k][n]dp[k]

如果长度为 n n n的有区间排列由 k ( k = 2 ) k(k=2) k(k=2)个最大区间并列,或者相交而成。
假设这两个最大区间分别是 [ 1 , m i d ] [1,mid] [1,mid] [ m i d + 1 , n ] [mid+1,n] [mid+1,n]
不妨设该有区间排列中左区间是 [ 1 , m i d ] [1,mid] [1,mid]
m i d mid mid可能会有很多取值,但我们确定它的值为使得该区间的严格前缀不是k的排列的最大值。
如: ( 1 , 2 , 3 , 4 ) (1,2,3,4) (1,2,3,4)被分为 [ 1 , 1 ] [1,1] [1,1] [ 2 , 4 ] [2,4] [2,4]
(不能被分为 [ 1 , 2 ] , [ 3 , 4 ] [1,2],[3,4] [1,2],[3,4],因为 ( 1 , 2 ) (1,2) (1,2)中,前缀 ( 1 ) (1) (1)是1的排列;也不能被分为 [ 1 , 3 ] , [ 4 , 4 ] [1,3],[4,4] [1,3],[4,4],因为 ( 1 , 2 , 3 ) (1,2,3) (1,2,3)中,前缀 ( 1 ) (1) (1)是1的排列,前缀 ( 1 , 2 ) (1,2) (1,2)是2的排列)。
( 2 , 1 , 3 , 4 ) (2,1,3,4) (2,1,3,4)被分为 [ 1 , 2 ] [1,2] [1,2] [ 3 , 4 ] [3,4] [3,4]
这样我们就将 m i d mid mid的值唯一确定了下来,统计的时候就不会重复或遗漏了。
假设左区间是 [ m i d + 1 , n ] [mid+1,n] [mid+1,n],确定 m i d mid mid的过程类似,它的值为使得该区间的严格前缀不是某数到 n n n的区间的最大值。
根据对称性可知左区间是 [ 1 , m i d ] [1,mid] [1,mid]的排列的数量和左区间是 [ m i d + 1 , n ] [mid+1,n] [mid+1,n]的排列的数量是一样的。
在确定左区间的严格前缀不是包含1或包含n的区间的情况下,右区间的数可以做全排列而不改变 m i d mid mid的取值。
怎么计算呢?
定义: A [ i ] A[i] A[i]表示长度为 i i i的排列的严格前缀不是某数的排列的数量;
即: A [ i ] = i ! − ∑ k = 1 i − 1 ( A [ k ] ∗ ( i − k ) ! ) A[i]=i!-\sum_{k=1}^{i-1}(A[k]*(i-k)!) A[i]=i!k=1i1(A[k](ik)!)
所以,若该有区间排列由 n ( n = 2 ) n(n=2) n(n=2)个最大区间并列而成,那么它的数量为:
2 ∗ ∑ k = 1 n − 1 ( A [ k ] ∗ ( n − k ) ! ) 2*\sum_{k=1}^{n-1}(A[k]*(n-k)!) 2k=1n1(A[k](nk)!)

所以: d p [ n ] = n ! − 2 ∗ ∑ k = 1 n − 1 ( A [ k ] ∗ ( n − k ) ! ) − ∑ k = 3 n − 1 B [ k ] [ n ] ∗ d p [ k ] dp[n]=n!-2*\sum_{k=1}^{n-1}(A[k]*(n-k)!)-\sum_{k=3}^{n-1}B[k][n]*dp[k] dp[n]=n!2k=1n1(A[k](nk)!)k=3n1B[k][n]dp[k]

#include<cstdio>
#include<algorithm>
using namespace std;
#define MAXN 400
#define LL long long
int dp[MAXN+10],fac[MAXN+10],B[MAXN+5][MAXN+5],A[MAXN];
int MO=1000000007,tm,n;
void Add(int &a,int b)
{
	if((a+=b)>=MO) a-=MO;
}
void Sub(int &a,int b)
{
	if((a-=b)<0) a+=MO;
}
int Mul(int a,int b)
{
	return 1LL*a*b%MO;
}
int main()
{
	freopen("interval.in","r",stdin);
	freopen("interval.out","w",stdout);
	scanf("%d%d",&tm,&MO);
	fac[0]=1;
	for(int i=1;i<=MAXN;i++)
		fac[i]=1LL*i*fac[i-1]%MO;
	for(int i=1;i<=MAXN;i++)
	{
		A[i]=fac[i];
		for(int j=1;j<i;j++)
			Sub(A[i],Mul(A[j],fac[i-j]));
	}
	B[0][0]=1;
	for(int i=1;i<=MAXN;i++)
		for(int j=1;j<=MAXN;j++)
			for(int k=1;k<=j;k++)
				Add(B[i][j],Mul(fac[k],B[i-1][j-k]));
	dp[1]=1;dp[2]=2;
	for(int i=3;i<=MAXN;i++)
	{
		dp[i]=fac[i];
		for(int j=1;j<i;j++)
		{
			Sub(dp[i],Mul(A[j],fac[i-j]));
			Sub(dp[i],Mul(A[j],fac[i-j]));
		}
		for(int j=3;j<i;j++)
			Sub(dp[i],Mul(dp[j],B[j][i]));
	}
	while(tm--)
	{
		scanf("%d",&n);
		printf("%d\n",dp[n]);
	}  
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值