算法
文章平均质量分 85
Hokwok18
这个作者很懒,什么都没留下…
展开
-
机器学习-逻辑回归
1 分类(Classification)2 假设函数表示(Hypothesis Representation)3 决策边界(Decision Boundary)4 代价函数(Cost Function) 5 简化的成本函数和梯度下降(Simplified Cost Function and Gradient Descent)6 进阶优化(Advanced Optimization)function [jVal, gradient]原创 2022-04-06 11:08:26 · 1443 阅读 · 1 评论 -
机器学习-多变量线性回归
1 多特征(Multiple Features)对于一个要度量的对象,一般来说会有不同维度的多个特征。比如之前的房屋价格预测例子中,除了房屋的面积大小,可能还有房屋的年限、房屋的层数等等其他特征:2 多变量梯度下降(Gradient Descent for Multiple Variables)3 梯度下降实践1-特征值缩放(Gradient Descent in Practice I - Feature Scaling)4 梯度下降实践2-学习速率(Gradient Descent原创 2022-04-06 11:01:51 · 1624 阅读 · 0 评论 -
机器学习-单变量的线性回归
1 模型表示(Model Representation)1.房价预测训练集Size in feet²**(x)**Price ($) in 1000’s(y)210446014162321534315852178……房价预测训练集中,同时给出了输入 和输出结果 ,即给出了人为标注的 ”正确结果“,且预测的量是连续的,属于监督学习中的回归问题。2.问题解决模型2 代价函数(Cost Function)3 代价函数 - 直观理解1原创 2022-04-06 10:34:30 · 1983 阅读 · 0 评论