应用一
设计算法以求解无向图G的连通分量的个数
图示:
深度遍历基本算法dfs(v0)如下 :
void dfs(int v0)
{
visite(v0);
visited[v0]=TRUE;
w=firstadj(G,v0);
while(w!=0)
{
if(!visited[w])
dfs(w);
w=nextadj(G,v0,w);
}
}
firstadj(G,v) :返回v的第一个邻接点(号),或0(不存在时)。
nextadj(G,v,w);返回v的第w邻接点中处于邻接点w之后的邻接点号,
或0(不存在时)
对整个图的遍历算法如下:
void travel_dfs(graph G)
{
for (i=1; i<=n; i++)
visited[i]=FALSE;
for (i=1; i<=n; i++)
if(!visited[i])
dfs(i);
}
对无向图G来说,选择某一顶点v执行dfs(v),可访问到所在连通分量中的所有顶点因此,选择起点的次数就是图G的连通分量数, 这可通过修改遍历整个图的算法dfs_travel来实现:每调用一次dfs算法计数一次。另外,考虑到要求求解连通分量数,因而可以将算法设计为整型函数。
具体算法如下
int numofGC(graph G)
{ int i; int k=0; // k用于连通分量的计数
for (i=1; i<=n; i++)
visited[i]=FALSE;
for (i=1; i<=n; i++)
if (visited[i]==FALSE)
{ k++; dfs(G,i); } //用k来累计连通分量个数
return k ;
}
2 设计算法求出无向图G的边数
void dfs (graph G, int v )
{ int w;
visited[v]=TRUE; //设置访问标志(访问结点的其它操作被省去)
w=firstadj(G,v);
while (w!=0)
{ E++; //此处意味着找到一条边,故累计到变量E中
if (visited[w]==FALSE)
dfs(G,w);
w=nextadj(G,v,w);
}
}
int Enum (graph G )
{ int i; E=0; //全局变量E记录整个图中的边数
for (i=1; i<=n; i++)
visited[i]=FALSE;
for (i=1; i<=n; i++)
if (visited[i]==FALSE;)
dfs(G,i);
return E/2;//注意,因为是无向图,每一条边统计了两次,返回E/2
}
与上面最初的dfs相比多了一个用于统计的E
深度遍历算法的应用二
设计算法,将1–n(=20,或其他数)放在一个环上,使环上任意两个相邻元素的和为质数。
分析:可以用图来描述该问题:
① 用顶点表示一个数
② 若两个数的和为质数,
则对应顶点之间有一条边。 例如,若n=10,对应图如右所示。
在这一表示下,问题转化为:求图中包含所有顶点的简单回路。
如图所示的一个解。
(1,2,3,4,7,6,5,8,9,10)
算法设计中需要注意的: 通过在dfs算法的基础上变化而得:
(1)路径的记录:需要增加变量或参数以记录路径,因此,不妨设一个数组以记录路径中的顶点序列和一个记录长度的变量。
(2)若某些走法行不通,需要重来,为此,要恢复visited[i]标志。
(3)需要判断首尾相接
void getcc(int k)
// A,B,visited为全局变量,k初值为1,B[1]固定为1
{ int i;
if (k==n && A[B[n],B[1]]==1) // 所有顶点在路径上,且构成回路,输出
print(B);
else if (k<n && k>0)
for (i=1;i<=n; i++)
if (visited[i]==FALSE && A[B[k],i]==1) // 搜索与B[k]相邻的下一个数i
{ visited[i]=TRUE; B[k+1]=i; // 将i放入路径中
getcc(k+1); // 往后搜索
visited[i]=FALSE; // 取消顶点i的放置,以便可被重新放入
}
}