es学习笔记

1.es介绍

Elasticsearch 是一个分布式、高扩展、高实时的搜索与数据分析引擎。它能很方便的使大量数据具有搜索、分析和探索的能力。充分利用Elasticsearch的水平伸缩性,能使数据在生产环境变得更有价值。Elasticsearch 的实现原理主要分为以下几个步骤,首先用户将数据提交到Elasticsearch 数据库中,再通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据,当用户搜索数据时候,再根据权重将结果排名,打分,再将返回结果呈现给用户。
Elasticsearch是与名为Logstash的数据收集和日志解析引擎以及名为Kibana的分析和可视化平台一起开发的。这三个产品被设计成一个集成解决方案,称为“Elastic Stack”(以前称为“ELK stack”)。
Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。Elasticsearch是分布式的,这意味着索引可以被分成分片,每个分片可以有0个或多个副本。每个节点托管一个或多个分片,并充当协调器将操作委托给正确的分片。再平衡和路由是自动完成的。相关数据通常存储在同一个索引中,该索引由一个或多个主分片和零个或多个复制分片组成。一旦创建了索引,就不能更改主分片的数量。
Elasticsearch使用Lucene,并试图通过JSON和Java API提供其所有特性。它支持facetting和percolating,如果新文档与注册查询匹配,这对于通知非常有用。另一个特性称为“网关”,处理索引的长期持久性;例如,在服务器崩溃的情况下,可以从网关恢复索引。Elasticsearch支持实时GET请求,适合作为NoSQL数据存储,但缺少分布式事务。

2.es一些应用

Elasticsearch虽然是基于Lucene构建,但应用领域确实非常宽泛。

1)全文检索

Elasticsearch靠全文检索起步,将Lucene开发包做成一个数据产品,屏蔽了Lucene各种复杂的设置,为开发人员提供了很友好的便利。很多传统的关系型数据库也提供全文检索,有的是基于Lucene内嵌,有的是基于自研,与Elasticsearch比较起来,功能单一,性能也表现不是很好,扩展性几乎没有。

2)应用查询

Elasticsearch最擅长的就是查询,基于倒排索引核心算法,查询性能强于B-Tree类型所有数据产品,尤其是关系型数据库方面。当数据量超过千万或者上亿时,数据检索的效率非常明显。

个人更看中的是Elasticsearch在通用查询应用场景,关系型数据库由于索引的左侧原则限制,索引执行必须有严格的顺序,如果查询字段很少,可以通过创建少量索引提高查询性能,如果查询字段很多且字段无序,那索引就失去了意义;相反Elasticsearch是默认全部字段都会创建索引,且全部字段查询无需保证顺序,所以我们在业务应用系统中,大量用Elasticsearch替代关系型数据库做通用查询,自此之后对于关系型数据库的查询就很排斥,除了最简单的查询,其余的复杂条件查询全部走Elasticsearch。

3)大数据领域

Elasticserach已经成为大数据平台对外提供查询的重要组成部分之一。大数据平台将原始数据经过迭代计算,之后结果输出到一个数据库提供查询,特别是大批量的明细数据。

这里会面临几个问题,一个问题是大批量明细数据的输出,如何能在极短的时间内写到数据库,传统上很多数据平台选择关系型数据库提供查询,比如MySQL,之前在这方面吃过不少亏,瞬间写入性能极差,根本无法满足要求。另一个问题是对外查询,如何能像应用系统一样提供性能极好的查询,不限制查询条件,不限制字段顺序,支持较高的并发,支持海量数据快速检索,也只有Elasticsearch能够做到比较均衡的检索。

从官方的发布版本新特性来看,Elasticseacrch志在大数据分析领域,提供了基于列示存储的数据聚合,支持的聚合功能非常多,性能表现也不错。
4)日志检索

日志自身特点没有什么通用的规范性,人为的随意性很大,日志内容也是任意的,更加需求全文检索能力,传统技术手段本身做全文检索很是吃力。而Elasticsearch本身起步就是靠全文检索,再加上其分布式架构的特性,非常符合海量日志快速检索的场景。

如今已经从ELK三件套发展到Elastic Stack了,新增加了很多非常有用的产品,大大增强了日志检索领域。

5)监控领域

指标监控,Elasticsearch进入此领域比较晚,却赶上了好时代,Elasticsearch由于其倒排索引核心算法,也是支持时序数据场景的,性能也是相当不错的,在功能性上完全压住时序数据库。

3.基本概念

1.近实时
Elasticsearch是一个近实时(Near Real Time,NRT)的数据搜索和分析平台。这意味着从索引文档到可搜索文档都会有一段微小的延迟(通常是1s以内)。
2.集群
集群(cluster)是一个或多个节点(node)的集合,这些节点将共同拥有完整的数据,并跨节点提供联合索引、搜索和分析功能。集群由唯一的名称标识(elasticsearch.yml配置文件中对应参数cluster.name),集群的名称是elasticsearch.yml配置文件中最重要的一个配置参数,默认名称为Elasticsearch,节点只能通过集群名称加入集群。 请确保不要在不同的环境中使用相同的集群名称,否则可能会导致节点加入错误的集群。例如,可以使用loggingdev、loggingstage和loggingprod来区分开发、预发布和生产环境的集群。 注意:只有一个节点的集群是有效的,而且有特殊的用处,尤其是可以在单节点集群进行快速的开发、测试。此外,可以存在多个独立的集群,每个集群都有自己唯一的集群名称。
3.节点
节点(node)是一个Elasticsearch的运行实例,也就是一个进程(process),多个节点组成集群,节点存储数据,并参与集群的索引、搜索和分析功能。与集群一样,节点由一个名称标识,默认情况下,该名称是在启动时分配给节点的随机通用唯一标识符(UUID)。如果不希望使用默认值,可以定义所需的任何节点名称。此名称对于集群管理很重要,因为在实际应用中需要确定网络中的哪些服务器对应于Elasticsearch集群中的哪些节点。 可以通过集群名称将节点配置为加入特定集群。默认情况下,每个节点都被设置为加入一个名为Elasticsearch的集群,这意味着,如果在网络上启动了多个节点,并且假设它们可以彼此发现,那么它们都将自动形成并加入一个名为Elasticsearch的集群。 在单个集群中,可以有任意多个节点。此外,如果当前网络上没有其他Elasticsearch节点在运行,则默认情况下,启动单个节点将形成一个名为Elasticsearch的新单节点集群。 注意:上面提到了节点实质是一个进程,因此服务器和节点可以是一对多的关系。还有一点需谨记,无论是开发环境、测试环境还是生产环境请配置有意义的节点名称。
4.索引
索引(index)是具有某种相似特性的文档集合。例如,可以有存储客户数据的索引,存储产品目录的索引,以及存储订单数据的索引。索引由一个名称(必须全部是小写)标识,当对其中的文档执行索引、搜索、更新和删除操作时,该名称指向这个特定的索引。 在单个集群中,可以定义任意多个索引。
5.类型
类型(type)这个概念在7.0版本以后已被彻底移除,因此不再赘述。
6.文档
文档(document)是可以被索引的基本信息单元。例如,可以为单个客户创建一个文档,为单个产品创建另一个文档,以及为单个订单创建另一个文档。文档以JSON表示,JSON是一种普遍存在的Internet数据交换格式。在单个索引中,理论上可以存储任意多的文档。

7.分片和副本
索引可能会存储大量数据,这些数据可能会超出单个节点的硬件限制。例如,占用1TB磁盘空间的10亿个文档的单个索引可能超出单个节点的磁盘容量,或者速度太慢,无法满足搜索请求的性能要求。 为了解决这个问题,Elasticsearch提供了将索引水平切分为多段(称为分片,shard)的能力。创建索引时,只需定义所需的分片数量。每个分片本身就是一个具有完全功能的独立“索引”,可以分布在集群中的任何节点上。 分片很重要,主要有两个原因:
· 分片可以水平拆分数据,实现大数据存储和分析。
· 可以跨分片(可能在多个节点上)进行分发和并行操作,从而提高性能和吞吐量。 如何分配分片以及如何将其文档聚合回搜索请求的机制完全由Elasticsearch管理,并且对用户是透明的。 在随时可能发生故障的网络或云环境中,如果某个分片或节点以某种方式脱机或因何种原因丢失,则强烈建议用户使用故障转移机制。为此,Elasticsearch提出了将索引分片复制一个或多个拷贝,称为副本(replica)。
副本很重要,主要有两个原因:
· 副本在分片或节点发生故障时提供高可用性。因此,需要注意的是,副本永远不会分配到复制它的原始主分片所在的节点上。也就是分片和对应的副本不可在同一节点上。这很容易理解,如果副本和分片在同一节点上,当机器发生故障时会同时丢失,起不到容错的作用。
· 通过副本机制,可以提高搜索性能和水平扩展吞吐量,因为可以在所有副本上并行执行搜索。 总之,每个索引可以分割成多个分片。每个分片可以有零个或多个副本。 可以在创建索引时为每个索引定义分片和副本的数量。创建索引后,还可以随时动态更改副本的数量。分片的数量理论上不可变更,唯一的办法重建索引,重新定义分片数量。但还是可以使用_shrink和_split API更改索引的分片数量,但这不是通常的做法,预先评估准确的分片数量才是最佳方法。 默认情况下,Elasticsearch中的每个索引都分配一个主分片和一个副本,这意味着如果集群中至少有两个节点,则索引将有一个主分片和另一个副本分片(一个完整副本),每个索引总共有两个分片。
8.分词
elasticsearch中专门处理分词的组件称之为分词器,英文为analyzer,它由以下几个部分组成。

character filters:针对原始文本进行处理,比如去除html标签
tokenizer:将原始文本按照一定规则进行切分
token filters:针对tokenizer处理过的单词进行再加工,比如大小写转换、助词(的、之、等等)的删除等
elasticsearch自带的分词器有standard、simple、whitespace、stop、keyword、pattern和language。下面以“The 2 QUICK Brown-Foxes jumped over the lazy dog’s bone.”文本为例,演示elasticsearch自带的分词器的分词效果。
(1).standard
特性为按词切分、小写处理,其分词结果为[the,2,quick,brown,foxes ,jumped,over,the,lazy,dog’s,bone]。

(2).simple
特性为按非字母切分、小写处理,其分词结果为[the,quick,brown,foxes ,jumped,over,the,lazy,dog,s,bone]。

(3).whitespace
特性为按空格切分,其分词结果为[the,2,QUICK ,Brown-Foxes ,jumped,over,the,lazy,dog’s,bone.]。

(4).stop
特性为按助词(the、an、的、这等)切分、小写处理,其分词结果为[quick,brown,foxes ,jumped,over,lazy,dog,s,bone]。

(5).keyword
特性为不分词,直接将输入作为一个单词输出,其分词结果为[The 2 QUICK Brown-Foxes jumped over the lazy dog’s bone.]。

(6).pattern
特性为通过正则表达式自定义分隔符(默认是\W+,即非字词的符号作为分隔符)、小写处理,其分词结果为[the,2,quick,brown,foxes, jumped,over, the,lazy,dog,s,bone]。

(7).language
特性为按语言(阿拉伯、英语等)切分。

一些基本操作

1、索引操作
1)查看es实例中所有索引
GET http://127.0.0.1:9200/_cat/indices?v

2)创建一个索引
PUT http://127.0.0.1:9200/shopping
3)查看单个索引
GET http://127.0.0.1:9200/shopping
4)删除索引
DELETE http://121.40.182.123:9200/shopping

2、文档操作
1)创建文档
POST请求和PUT请求都可以创建文档

创建文档时,POST可以携带ID也可以不携带ID,但是PUT请求必须要携带ID

创建文档时,POST请求携带ID,如果ES中有相同的文档,则为修改,但是version一直增加

创建文档时,PUT请求携带ID,如果ES中有相同的文档,则为修改,但是version不会增加

POST http://121.40.182.123:9200/shopping/_doc
{ 
	"title":"小米手机", 
	"category":"小米", 
	"images":"http://www.gulixueyuan.com/xm.jpg", 
	"price":3999.00
}

2)查询单个文档
GET http://121.40.182.123:9200/shopping/_doc/1

3)修改文档 (全量覆盖)
和新增文档一样,输入相同的URL地址请求,如果请求体变化,会将原有的数据内容覆盖 在 Postman 中,向 ES 服务器发 POST请求 :http://127.0.0.1:9200/shopping/_doc/1

POST http://121.40.182.123:9200/shopping/_doc/1
{ 
	"title":"华为手机手机", 
	"category":"小米", 
	"images":"http://www.gulixueyuan.com/xm.jpg", 
	"price":3999.00
}

4)修改字段
修改数据时,也可以只修改某一给条数据的局部信息

POST http://121.40.182.123:9200/shopping/_update/1
{ 
	"doc": {
		"title":"apple pro18"
	}
}

5)删除文档
删除一个文档不会立即从磁盘上移除,它只是被标记成已删除(逻辑删除)

DELETE http://121.40.182.123:9200/shopping/_doc/1
6)根据条件删除文档
POST http://121.40.182.123:9200/shopping/_delete_by_query
{
“query”: {
“match”: {
“title”: “小米手机”
}
}
}
3、映射操作
1)创建映射
PUT http://127.0.0.1:9200/student/_mapping

{
    "properties": {
        "name": {
            "type": "text",
            "index": true
        },
        "sex": {
            "type": "text",
            "index": false
        },
        "age": {
            "type": "long",
            "index": false
        }
    }
}

映射字段说明:

type:类型,Elasticsearch 中支持的数据类型非常丰富,说几个关键的:

​ String 类型,又分两种:

​ text:可分词

​ keyword:不可分词,数据会作为完整字段进行匹配

​ Numerical:数值类型,分两类

​ 基本数据类型:long、integer、short、byte、double、float、half_float

​ 浮点数的高精度类型:scaled_float

​ Date:日期类型

​ Array:数组类型

​ Object:对象

index:是否索引,默认为 true,也就是说你不进行任何配置,所有字段都会被索引。

​ true:字段会被索引,则可以用来进行搜索

​ false:字段不会被索引,不能用来搜索

store:是否将数据进行独立存储,
4、高级查询
1)查询所有文档
POST http://121.40.182.123:9200/student/_search

{
    "query":{
        "match_all":{}    
    }
}

2)匹配查询
POST http://121.40.182.123:9200/student/_search

{
    "query":{
        "match":{
        	"name": "zhangsan"
        }    
    }
}

3)多字段匹配查询
POST http://121.40.182.123:9200/student/_search

{
	 "query": {
		 "multi_match": {
			 "query": "zhangsan",
			 "fields": ["name","nickName"]
		  }
	 }
}

4)关键字精确查询
http://121.40.182.123:9200/student/_search

{
	 "query": {
		 "term": {
			 "name":{
			 	"value":"zhangsan"
			 }
		  }
	 }
}

5)多关键字精确查询 term
terms 查询和 term 查询一样,但它允许你指定多值进行匹配。 如果这个字段包含了指定值中的任何一个值,那么这个文档满足条件

http://121.40.182.123:9200/student/_search

{
	 "query": {
		 "term": {
			 "name":["zhangsan","lisi"]
		  }
	 }
}

spring整合elastic

Spring boot 2.5.x整合ElasticSearch 7.1x
es模糊查询、分词查询、精确查询
ElasticsearchTemplate的详细使用,完成多条件查询、匹配度查询等

项目保存数据思路

可以从excel表中读,也可以从mysql中读取数据然后保存到Es中,由于只存公司名,因此公司名作为id:

@Data
@AllArgsConstructor
@NoArgsConstructor
@Builder
@Document(indexName = "company")
public class Company {
    @Id
    @Field(type = FieldType.Text)
//    @JsonIgnore
    private String id;
    @Field(type = FieldType.Text, analyzer = "ik_max_word", searchAnalyzer = "ik_max_word")
    private String name;
}

  @ApiOperation("保存")
    @GetMapping("/save")
    public Result<List<Company>> save() {
        Company company = new Company();
        company.setId("安徽省xx有限公司");
        company.setName("安徽省xx有限公司");
   
        esService.save(company);
        return Result.success(esService.findAll());
    }
elasticsearch 学习笔记包括以下内容: 一、Elasticsearch概述: - Elasticsearch是一种开源的分布式搜索和分析引擎,可以用于快速搜索、分析和存储大量的结构化和非结构化数据。 - Elasticsearch与Solr相比有一些区别,包括用户、开发和贡献者社区的规模和成熟度等方面。 二、Elasticsearch安装: 1. 下载Elasticsearch,可以从官方网站或华为云镜像下载。 2. 安装Elasticsearch。 三、安装head插件: - head插件是一个可视化的管理界面,可以方便地管理和监控Elasticsearch集群。 四、安装Kibana: 1. Kibana是一个开源的数据可视化工具,用于展示和分析Elasticsearch中的数据。 2. 下载Kibana并安装。 3. 启动Kibana并进行访问测试。 4. 可选的汉化操作。 五、ES核心概念理解: - 学习ES的核心概念,包括索引、文档、映射、查询等。 以上是elasticsearch学习笔记的主要内容,希望对你有帮助。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [Elasticsearch 学习笔记(上)](https://blog.csdn.net/m0_52691962/article/details/127064350)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值