密码学二次剩余困难性问题The Quadratic Residuosity Problem

这篇博客探讨了模数N=pq下二次剩余的概念,以N=21为例,详细阐述了如何利用中国剩余定理映射简化剩余系,并分析了二次剩余的性质。在Z21∗中找到三个平方剩余,并指出寻找二次剩余的困难性与大素数分解的联系。
摘要由CSDN通过智能技术生成

注:需要有密码学基础才能看懂,全文以N=21举例
基础推导:
假设模数 N = p ⋅ q N=p\cdot q N=pq 。p和q是两个不同的奇素数,N是一个Blum Integer(参考链接)。举例N=21(p=3,q=7). Z N ∗ Z_N^{*} ZN是他的简化剩余系。则 Z N ∗ Z_N^{*} ZN含有 ( p − 1 ) ⋅ ( q − 1 ) (p-1)\cdot (q-1) (p1)(q1)个元素(原理:欧拉函数).
N = 21 , ϕ ( N ) = 2 ∗ 6 = 12 , Z N ∗ = { 1 , 2 , 4 , 5 , 8 , 10 , 11 , 13 , 16 , 17 , 19 , 20 } . N=21,\phi (N)=2*6=12,Z_N^{*} = \{ 1,2,4,5,8,10,11,13,16,17,19,20\}. N=21,ϕ(N)=26=12,ZN={1,2,4,5,8,10,11,13,16,17,19,20}.
根据Chinese remainder theorem(中国剩余定理),我们可以作如下映射 x → ( x m o d p , x m o d q ) x → (x mod p, x mod q) x(xmodp,xmodq),且是双射。
上面 Z N ∗ Z_N^{*} ZN的点则变为了 { ( 1 , 1 ) , ( 2 , 2 ) , ( 1 , 4 ) , ( 2 , 5 ) , ( 2 , 1 ) , ( 1 , 3 ) , ( 2 , 4 ) , ( 1 , 6 ) , ( 1 , 2 ) , ( 2 , 3 ) , ( 1 , 5 ) , ( 2 , 6 ) } . \{ (1,1),(2,2),(1,4),(2,5),(2,1),(1,3),(2,4),(1,6),(1,2),(2,3),(1,5),(2,6)\}. {(1,1),(2,2),(1,4),(2,5),(2,1),(1,3),(2,4),(1,6),(1,2),(2,3),(1,5),(2,6)}.这个点构成的 Z N ∗ Z_N^{*} ZN同样构成乘法群。(1)封闭性, x = ( x p , x q ) , y = ( y p , y q ) . z = ( x p ⋅ y p m o d p , y p ⋅ y q m o d q ) . 如 果 x , y 属 于 Z N ∗ 那 么 x p , x q , y p , y q 均 为 非 零 元 , 可 知 z m o d p , z m o d q 同 样 为 非 零 元 。 x=(x_p,x_q),y=(y_p,y_q).z=(x_p \cdot y_p mod p,y_p\cdot y_q mod q).如果x,y属于Z_N^{*} 那么x_p,x_q,y_p,y_q均为非零元,可知z mod p,z mod q同样为非零元。 x=(xp,xq),y=(yp,yq).z=(xpypmodp,ypyqmodq).x,yZNxp,xq,yp,yqzmodp,zmodq (2)单位元(1,1).(3)逆元满足。所以是一个群。

如果 r = x 2 m o d N r=x^{2} mod N r=x2modN是二次剩余,且是 Z N ∗ Z_N^{*} ZN中的元素,那么他在 Z N ∗ Z_N^{*} ZN中有四个平方根。
x p = x m o d p , x q = x m o d q x_p=x mod p,x_q =x mod q xp=xmodp,xq=xmodq x 1 = ( x p , x q ) x_1=(x_p,x_q) x1=(xp,xq) x 2 = ( − x p , x q ) x_2=(-x_p,x_q) x2=(xp,xq) x 3 = ( x p , − x q ) x_3=(x_p,-x_q) x3=(xp,xq) x 4 = ( − x p , − x q ) x_4=(-x_p,-x_q) x4=(xp,xq)
x 1 2 = x 2 2 = x 3 2 = x 4 2 = r m o d N x_1^{2} =x_2^{2} =x_3^{2} =x_4^{2}=r mod N x12=x22=x32=x42=rmodN
因此这四个均是r不同的平方根。
可知在 Z N ∗ Z_N^{*} ZN中有 ( p − 1 ) ⋅ ( q − 1 ) / 4 (p-1)\cdot (q-1)/4 (p1)(q1)/4个元素是二次剩余。( Z N ∗ Z_N^{*} ZN ( p − 1 ) ⋅ ( q − 1 ) 个 元 素 , 每 一 个 二 次 剩 余 在 (p-1)\cdot (q-1)个元素,每一个二次剩余在 (p1)(q1)Z_N^{*} 中 有 四 个 平 方 根 , 因 此 有 ( p − 1 ) ⋅ ( q − 1 ) / 4 个 元 素 是 二 次 剩 余 中有四个平方根,因此有(p-1)\cdot (q-1)/4个元素是二次剩余 (p1)(q1)/4)
Z 21 ∗ Z_{21}^{*} Z21中:
( 1 , 1 ) 2 = ( 1 , 1 ) m o d 21 , ( 2 , 2 ) 2 = ( 1 , 4 ) m o d 21 , ( 1 , 4 ) 2 = ( 1 , 2 ) m o d 21 , ( 2 , 5 ) 2 = ( 1 , 4 ) m o d 21 剩 下 的 自 行 计 算 总 之 最 后 结 果 为 { ( 1 , 1 ) , ( 1 , 4 ) , ( 1 , 2 ) } 三 个 平 方 剩 余 (1,1)^{2}=(1,1) mod 21,(2,2)^{2}=(1,4) mod 21,(1,4)^{2}=(1,2) mod 21,(2,5)^{2}=(1,4) mod 21剩下的自行计算总之最后结果为\{ (1,1),(1,4),(1,2)\}三个平方剩余 (1,1)2=(1,1)mod21,(2,2)2=(1,4)mod21,(1,4)2=(1,2)mod21,(2,5)2=(1,4)mod21{(1,1),(1,4),(1,2)}

困难性问题:如果存在一个算法A能以多项式时间t,以概率 ≥ ξ \geq \xi ξ寻找以模为N=pq的二次剩余,那么存在算法 A ∗ A^{*} A以时间 t + O ( l o g N ) O ( 1 ) t+O(log N)^{O(1)} t+O(logN)O(1),以概率 ≥ ξ 2 \geq \frac{\xi}{2} 2ξ分解N。证明略。

参考资料:
1.The Group of Signed Quadratic Residues and Applications(Dennis Hofheinz and Eike Kiltz)
2.Notes on Zero Knowledge(Professor Luca Trevisan)
3.https://math.stackexchange.com/questions/1090675/blum-blum-shub-pseudorandom-numbers-clarification-on-prerequisites
4.https://crypto.stanford.edu/pbc/notes/numbertheory/crt.html
5.https://brilliant.org/wiki/legendre-symbol/

  • 5
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

帅逼码农

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值