【Spark】on yarn集群模式安装部署

  • 官方文档

http://spark.apache.org/docs/latest/running-on-yarn.html

 

  • 前提

安装启动Hadoop(需要使用HDFS和YARN)

 

安装单机版Spark

不需要集群,因为把Spark程序提交给YARN运行本质上是把字节码给YARN集群上的JVM运行,但是得有一个东西帮我去把任务提交上个YARN,所以需要一个单机版的Spark,里面的有spark-shell命令,spark-submit命令

 

  • 修改配置

spark-env

cd /export/servers/spark-2.2.0-bin-2.6.0-cdh5.14.0/conf/
vim ./spark-env.sh

配置:

#配置java环境变量
export JAVA_HOME=${JAVA_HOME}
#指定spark Master的IP
export SPARK_MASTER_HOST=node01
#指定spark Master的端口
export SPARK_MASTER_PORT=7077
export HADOOP_CONF_DIR=/export/servers/hadoop-2.6.0-cdh5.14.0/etc/hadoop

 

  • cluster模式

1.在企业生产环境中大部分都是cluster部署模式运行Spark应用

2.Spark On YARN的Cluster模式 指的是Driver程序运行在YARN集群上

3.Driver:运行应用程序的main()函数并创建SparkContext的进程

 

测试

/export/servers/spark-2.2.0-bin-2.6.0-cdh5.14.0/bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode cluster \
--driver-memory 1g \
--executor-memory 1g \
--executor-cores 2 \
--queue default \
/export/servers/spark-2.2.0-bin-2.6.0-cdh5.14.0/examples/jars/spark-examples_2.11-2.2.0.jar \
10

 

查看界面

http://node01:8088/cluster

 

  • client模式

1.主要用于学习测试时使用,开发不用

2.Spark On YARN的Client模式 指的是Driver程序运行在提交任务的客户端

 

测试

/export/servers/spark-2.2.0-bin-2.6.0-cdh5.14.0/bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode client \
--driver-memory 1g \
--executor-memory 1g \
--executor-cores 2 \
--queue default \
/export/servers/spark-2.2.0-bin-2.6.0-cdh5.14.0/examples/jars/spark-examples_2.11-2.2.0.jar \
10

 

查看界面

http://node01:8088/cluster

 

  • 两种模式的区别

cluster模式

1.Driver程序在YARN集群中

2.应用的运行结果不能在客户端显示

3.该模式下Driver运行ApplicattionMaster这个进程中,如果出现问题,yarn会重启ApplicattionMaster(Driver)

 

client模式

1.Driver运行在Client上的SparkSubmit进程中

2.应用程序运行结果会在客户端显示

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值