
深度学习
文章平均质量分 97
好运连连女士
这个作者很懒,什么都没留下…
展开
-
李沐《动手学深度学习》 | 线性神经网络-线性回归
从均值为0、标准差为0.01的正态分布中采样随机数来初始化权重。表示生成一个一维向量,形状为(1,)模型输入X数据集,w权重的矩阵,b偏置量,输出预测的结果y向量"""线性回归模型"""这里使用的均方损失函数12y−y221y−y2,需要比较真实值yyy和预测值y\hat yy之间的差距# 均方损失# 防止形状不匹配,我们统一一下首先需要超参数学习率与批量大小,所以我们将其作为输入lrbatch_size。原创 2025-04-10 22:16:54 · 931 阅读 · 0 评论 -
pytorch TensorDataset与DataLoader类
该类主要实现以下三个功能①如何获取每一个数据及其label --> 抽象方法。原创 2025-04-10 21:34:59 · 908 阅读 · 0 评论 -
pytorch 反向传播
实践中,根据涉及号的模型,系统会构建一个计算图,来跟踪计算是哪些数据通过哪些操作组合起来产生输出。但对于y本身来说还是一个在该计算图中,就可以在y上调用反向传播函数,得到。关于列向量x求导的结果是4x,根据打印结果来看结果是正确的。一样的tensor,只是将函数z中的y替换成了这个等价变量。4.调用反向传播函数来自动计算y关于x每个分量的梯度。2.计算y关于x的梯度之前,需要一个地方来存储梯度。3.计算y的值,y是一个标量,在python中表示为。的梯度,正常反向传播时,梯度会通过。原创 2025-04-09 22:13:15 · 857 阅读 · 0 评论