Yarn的学习笔记

1、Yarn基本架构

Yarn 资源调度器

Yarn是一个资源高度平台,负责为运算程序提供服务器运算资源,相当于一个分布式的操作系统平台,而Mapreduce等运算程序则相当于运行于操作系统之上的应用程序。

Yarn 的基本架构

Yarn主要由ResourceManager、NodeManager、ApplicationMaster和Container等组件构成,如图:

在这里插入图片描述

2、Yarn工作机制

1.Yarn运行机制,如图所示。

Yarn运行机制

2.工作机制详解

(1)MR程序提交到客户端所在的节点。
(2)YarnRunner向ResourceManager申请一个Application。
(3)RM将该应用程序的资源路径返回给YarnRunner。
(4)该程序将运行所需资源提交到HDFS上。
(5)程序资源提交完毕后,申请运行mrAppMaster。
(6)RM将用户的请求初始化成一个Task。
(7)其中一个NodeManager领取到Task任务。
(8)该NodeManager创建容器Container,并产生MRAppmaster。
(9)Container从HDFS上拷贝资源到本地。
(10)MRAppmaster向RM申请运行MapTask资源。
(11)RM将运行MapTask任务分配给另外两个NodeManager,另两个NodeManager
分别领取任务并创建容器。
(12)MR向两个接收到任务的NodeManager发送程序启动脚本,这两个NodeManager
分别启动MapTask,MapTask对数据分区排序。
(13)MrAppMaster等待所有MapTask运行完毕后,向RM申请容器,运行ReduceTask。
(14)ReduceTask向MapTask获取相应分区的数据。
(15)程序运行完毕后,MR会向RM申请注销自己。

3、作业提交全过程

1.作业提交过程之YARN,如图所示。

在这里插入图片描述
作业提交全过程详解
(1)作业提交
第1步:Client调用job.waitForCompletion方法,向整个集群提交MapReduce作业。
第2步:Client向RM申请一个作业id。
第3步:RM给Client返回该job资源的提交路径和作业id。
第4步:Client提交jar包、切片信息和配置文件到指定的资源提交路径。
第5步:Client提交完资源后,向RM申请运行MrAppMaster。
(2)作业初始化
第6步:当RM收到Client的请求后,将该job添加到容量调度器中。
第7步:某一个空闲的NM领取到该Job。
第8步:该NM创建Container,并产生MRAppmaster。
第9步:下载Client提交的资源到本地。
(3)任务分配
第10步:MrAppMaster向RM申请运行多个MapTask任务资源。
第11步:RM将运行MapTask任务分配给另外两个NodeManager,另两个NodeManager
分别领取任务并创建容器。
(4)任务运行
第12步:MR向两个接收到任务的NodeManager发送程序启动脚本,这两个
NodeManager分别启动MapTask,MapTask对数据分区排序。
第13步:MrAppMaster等待所有MapTask运行完毕后,向RM申请容器,运行ReduceTask。
第14步:ReduceTask向MapTask获取相应分区的数据。
第15步:程序运行完毕后,MR会向RM申请注销自己。
(5)进度和状态更新
YARN中的任务将其进度和状态(包括counter)返回给应用管理器,客户端每秒(通过
mapreduce.client.progressmonitor.pollinterval设置)向应用管理器请求进度更新,展示给用户。
(6)作业完成
除了向应用管理器请求作业进度外,客户端每5秒都会通过调用waitForCompletion()来
检查作业是否完成。时间间隔可以通过mapreduce.client.completion.pollinterval来设置。作业
完成之后,应用管理器和Container会清理工作状态。作业的信息会被作业历史服务器存储
以备之后用户核查。

2.作业提交过程之MapReduce,如图所示

在这里插入图片描述

4、资源调度器

目前,Hadoop作业调度器主要有三种:FIFO(先进先出)、CapacityScheduler(容量高度器)和FairScheduler(公平调度器)。
Hadoop2.7.2默认的资源调度器是CapacityScheduler。
具体设置详见:yarn-default.xml文件

Theclasstouseastheresource
scheduler.
yarn.resourcemanager.scheduler.class
org.apache.hadoop.yarn.server.resourcemanager.scheduler.
capacity.CapacityScheduler

1.先进先出调度器(FIFO),如图所示

在这里插入图片描述

2.容量调度器(CapacityScheduler),如图所示

在这里插入图片描述

3.公平调度器(FairScheduler),如图所示

在这里插入图片描述

5、任务的推测执行

1.作业完成时间取决于最慢的任务完成时间

一个作业由若干个Map任务和Reduce任务构成。因硬件老化、软件Bug等,某些任务
可能运行非常慢。
思考:系统中有99%的Map任务都完成了,只有少数几个Map老是进度很慢,完不成,
尚硅谷大数据技术之Hadoop(YARN)
—————————————————————————————
怎么办?

2.推测执行机制

发现拖后腿的任务,比如某个任务运行速度远慢于任务平均速度。为拖后腿任务启动一
个备份任务,同时运行。谁先运行完,则采用谁的结果。

3.执行推测任务的前提条件

(1)每个Task只能有一个备份任务
(2)当前Job已完成的Task必须不小于0.05(5%)
(3)开启推测执行参数设置。mapred-site.xml文件中默认是打开的。

<property>
<name>mapreduce.map.speculative</name>
<value>true</value>
<description>Iftrue,thenmultipleinstancesofsomemaptasks
maybeexecutedinparallel.</description>
</property>
<property>
<name>mapreduce.reduce.speculative</name>
<value>true</value>
<description>Iftrue,thenmultipleinstancesofsomereduce
tasksmaybeexecutedinparallel.</description>
</property>

4.不能启用推测执行机制情况

(1)任务间存在严重的负载倾斜;
(2)特殊任务,比如任务向数据库中写数据。

5.算法原理,如图4-20所示

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值