F - Building Numbers

Statements

In this problem, you can build a new number starting from 1, by performing the following operations as much as you need:

  • Add 1 to the current number.
  • Add the current number to itself (i.e. multiply it by 2).

For example, you can build number 8 starting from 1 with three operations . Also, you can build number 10 starting from 1 with five operations .

You are given an array a consisting of nintegers, and q queries. Each query consisting of two integers l and r, such that the answer of each query is the total number of operations you need to preform to build all the numbers in the range from l to r (inclusive) from array a, such that each number ai (l ≤ i ≤ r) will be built with the minimum number of operations.

Input

The first line contains an integer T (1 ≤ T ≤ 50), where T is the number of test cases.

The first line of each test case contains two integers n and q (1 ≤ n, q ≤ 105), where n is the size of the given array, and q is the number of queries.

The second line of each test case contains nintegers a1, a2, ..., an (1 ≤ ai ≤ 1018), giving the array a.

Then q lines follow, each line contains two integers l and r (1 ≤ l ≤ r ≤ n), giving the queries.

Output

For each query, print a single line containing its answer.

Example

Input

1
5 3
4 7 11 8 10
4 5
1 5
3 3

Output

7
18
5

Note

As input/output can reach huge size it is recommended to use fast input/output methods: for example, prefer to use scanf/printf instead of cin/cout in C++, prefer to use BufferedReader/PrintWriter instead of Scanner/System.out in Java.

In the first query, you need 3 operations to build number 8, and 4 operations to build number 10. So, the total number of operations is 7.

#include <iostream>
#include<stdio.h>
#include<map>
using namespace std;
int main()
{int t;
scanf("%d",&t);
while(t--)
{
    int n,m;
    scanf("%d%d",&n,&m);
    int i;
    long long int a[100005];
    for(i=1;i<=n;i++)
    {int s=0;
        scanf("%lld",&a[i]);
        while(a[i]>1)
        {
            if(a[i]%2!=0)
            {
                a[i]--;
                s++;
            }
            else
            {
                a[i]=a[i]/2;
                s++;
            }
        }
        a[i]=s;
        a[i]=a[i]+a[i-1];
    }
    for(i=1;i<=m;i++)
    {
        int x,y;
        scanf("%d%d",&x,&y);
        printf("%lld\n",a[y]-a[x-1]);
    }
}

    return 0;
}

 

用c++解决1160. Network Time limit: 1.0 second Memory limit: 64 MB Andrew is working as system administrator and is planning to establish a new network in his company. There will be N hubs in the company, they can be connected to each other using cables. Since each worker of the company must have access to the whole network, each hub must be accessible by cables from any other hub (with possibly some intermediate hubs). Since cables of different types are available and shorter ones are cheaper, it is necessary to make such a plan of hub connection, that the maximum length of a single cable is minimal. There is another problem - not each hub can be connected to any other one because of compatibility problems and building geometry limitations. Of course, Andrew will provide you all necessary information about possible hub connections. You are to help Andrew to find the way to connect hubs so that all above conditions are satisfied. Input The first line contains two integer: N - the number of hubs in the network (2 ≤ N ≤ 1000) and M — the number of possible hub connections (1 ≤ M ≤ 15000). All hubs are numbered from 1 to N. The following M lines contain information about possible connections - the numbers of two hubs, which can be connected and the cable length required to connect them. Length is a positive integer number that does not exceed 106. There will be no more than one way to connect two hubs. A hub cannot be connected to itself. There will always be at least one way to connect all hubs. Output Output first the maximum length of a single cable in your hub connection plan (the value you should minimize). Then output your plan: first output P - the number of cables used, then output P pairs of integer numbers - numbers of hubs connected by the corresponding cable. Separate numbers by spaces and/or line breaks.
05-28
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值