In this problem, you can build a new number starting from 1, by performing the following operations as much as you need:
- Add 1 to the current number.
- Add the current number to itself (i.e. multiply it by 2).
For example, you can build number 8 starting from 1 with three operations . Also, you can build number 10 starting from 1 with five operations .
You are given an array a consisting of nintegers, and q queries. Each query consisting of two integers l and r, such that the answer of each query is the total number of operations you need to preform to build all the numbers in the range from l to r (inclusive) from array a, such that each number ai (l ≤ i ≤ r) will be built with the minimum number of operations.
Input
The first line contains an integer T (1 ≤ T ≤ 50), where T is the number of test cases.
The first line of each test case contains two integers n and q (1 ≤ n, q ≤ 105), where n is the size of the given array, and q is the number of queries.
The second line of each test case contains nintegers a1, a2, ..., an (1 ≤ ai ≤ 1018), giving the array a.
Then q lines follow, each line contains two integers l and r (1 ≤ l ≤ r ≤ n), giving the queries.
Output
For each query, print a single line containing its answer.
Example
Input
1 5 3 4 7 11 8 10 4 5 1 5 3 3
Output
7 18 5
Note
As input/output can reach huge size it is recommended to use fast input/output methods: for example, prefer to use scanf/printf instead of cin/cout in C++, prefer to use BufferedReader/PrintWriter instead of Scanner/System.out in Java.
In the first query, you need 3 operations to build number 8, and 4 operations to build number 10. So, the total number of operations is 7.
#include <iostream>
#include<stdio.h>
#include<map>
using namespace std;
int main()
{int t;
scanf("%d",&t);
while(t--)
{
int n,m;
scanf("%d%d",&n,&m);
int i;
long long int a[100005];
for(i=1;i<=n;i++)
{int s=0;
scanf("%lld",&a[i]);
while(a[i]>1)
{
if(a[i]%2!=0)
{
a[i]--;
s++;
}
else
{
a[i]=a[i]/2;
s++;
}
}
a[i]=s;
a[i]=a[i]+a[i-1];
}
for(i=1;i<=m;i++)
{
int x,y;
scanf("%d%d",&x,&y);
printf("%lld\n",a[y]-a[x-1]);
}
}
return 0;
}